klystron

简明释义

[ˈklɪstrɒn][ˈklaɪstrɑːn]

n. [电子] 速调管

英英释义

A klystron is a type of vacuum tube used to amplify high-frequency microwave signals, often employed in radar and satellite communications.

klystron是一种真空管,用于放大高频微波信号,通常用于雷达和卫星通信中。

单词用法

klystron amplifier

klystron放大器

klystron oscillator

klystron振荡器

traveling wave klystron

行波klystron

high-power klystron

高功率klystron

microwave klystron

微波klystron

klystron frequency

klystron频率

同义词

microwave amplifier

微波放大器

The klystron is commonly used in radar systems.

klystron常用于雷达系统。

electron tube

电子管

Microwave amplifiers are essential for satellite communication.

微波放大器对于卫星通信至关重要。

vacuum tube

真空管

Electron tubes, including klystrons, are used in high-frequency applications.

包括klystron在内的电子管被用于高频应用。

反义词

receiver

接收器

The receiver converts the radio signals into audio.

接收器将无线电信号转换为音频。

detector

探测器

The detector is used to measure the intensity of the signal.

探测器用于测量信号的强度。

例句

1.A design of an over-all experiment of Raman free electron laser with an optical klystron configuration is put forward.

本文提出光学速调管结构喇曼自由电子激光器总体实验设计。

2.We also study the influence of the parameters of output section on the efficiency of the klystron.

利用该程序对输出段的重要参数如阻抗、间隙渡越角等对效率的影响作了研究。

3.Making the second section undulator of optical klystron resonant with the higher harmonic of the laser, the harmonic emission can be enhanced.

使光学速调管第二段波动器的磁场参数与光场的高次谐波共振,与对称光学速调管情况相比,可使产生的相干谐波辐射强度提高。

4.The radiation field in the klystron gallery mainly comes from the klystrons. It varies because of the different parameters of each klystron.

速调管走廊内的辐射场主要是由于大功率速调管的运行造成的,因各个速调管参数不一致而使各点的辐射剂量呈现出较大的差异。

5.Finally, the key technical problems and trend of multibeam klystron are point...

指出了多注速调管的关键技术问题和发展趋势。

6.The characteristic and application conditions of three-phase ac intelligent thyristor power module (ITPM) and load characteristic of klystron are presented.

简要叙述了三相交流晶闸管智能模块(ITPM)的性能特点、应用情况以及速调管的负载特性。

7.Later, with the klystron and cavity magnetron invention, scientists began to study the nature of centimeter wave.

后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。

8.A method for prolonging the operation lifetime of klystron in EPR spectrometer was described.

描述了一种延长EPR波谱仪中速调管使用寿命的方法。

9.The effect of the parameters of multibeam klystron on the operating bandwidth and output power has also bean studied, and the power limitation is given in this paper.

研究了多注速调管参数对工作带宽和输出功率的影响。给出了多注速调管的功率限制。

10.The radar system relies on a high-powered klystron to generate the necessary microwave signals.

雷达系统依赖于高功率的速调管来产生所需的微波信号。

11.In particle accelerators, a klystron is used to amplify the radio frequency power needed for acceleration.

在粒子加速器中,速调管用于放大加速所需的射频功率。

12.Engineers are testing a new design of a klystron to improve efficiency in communication satellites.

工程师们正在测试一种新设计的速调管,以提高通信卫星的效率。

13.The klystron tube was invented in the 1930s and has been crucial for microwave technology.

速调管管是在20世纪30年代发明的,对微波技术至关重要。

14.A klystron can provide a stable output frequency, which is essential for radar applications.

一个速调管可以提供稳定的输出频率,这对雷达应用至关重要。

作文

The invention of the klystron marked a significant milestone in the field of electronics and communication technology. A klystron is a type of vacuum tube that amplifies microwave signals through the use of electron beams. This technology has been pivotal in various applications, especially in radar systems and satellite communications.To understand the importance of the klystron, we must first explore its operational principles. The basic working principle of a klystron involves the modulation of an electron beam. When electrons are emitted from a heated cathode, they travel through a vacuum towards an anode. In a klystron, this beam passes through a series of cavities that are designed to interact with the microwave signals. As the electron beam moves through these cavities, it picks up energy from the incoming microwave signal, causing it to amplify the signal significantly.One of the most notable features of the klystron is its ability to produce high-power microwave signals. This capability makes it an essential component in many modern technologies. For instance, in radar systems, the klystron provides the necessary power to transmit signals over long distances, allowing for effective detection and tracking of objects. Similarly, in satellite communications, klystrons ensure that signals can be transmitted and received with minimal loss, thereby maintaining the quality and reliability of communication.Moreover, the klystron has also found applications in scientific research. Particle accelerators, which are used in physics experiments, often utilize klystrons to generate the high-frequency signals needed to accelerate particles to near-light speeds. This capability has led to groundbreaking discoveries in the field of particle physics and has contributed to our understanding of the fundamental components of matter.Despite the advancements in technology, the klystron continues to play a vital role in various industries. Its reliability and efficiency make it a preferred choice for high-power applications. However, it is worth noting that with the emergence of solid-state devices, there is ongoing research into alternative technologies that could potentially replace the klystron. Yet, the unique characteristics of the klystron mean that it will likely remain an important component in many systems for the foreseeable future.In conclusion, the klystron is not just a piece of technology; it represents a crucial development in the history of electronics. Its ability to amplify microwave signals has had profound implications across various fields, from communications to scientific research. As we continue to innovate and push the boundaries of technology, the legacy of the klystron will undoubtedly influence future advancements in electronic engineering and beyond.

klystron(克莱斯特龙)的发明标志着电子和通信技术领域的重要里程碑。klystron是一种真空管,通过电子束放大微波信号。这项技术在各种应用中发挥了重要作用,尤其是在雷达系统和卫星通信中。要理解klystron的重要性,我们首先必须探索其操作原理。klystron的基本工作原理涉及电子束的调制。当电子从加热的阴极发射时,它们会在真空中朝向阳极移动。在klystron中,这束电子通过一系列设计用于与微波信号相互作用的腔体。当电子束在这些腔体中移动时,它从输入的微波信号中获取能量,从而显著放大信号。klystron最显著的特点之一是其产生高功率微波信号的能力。这种能力使其成为许多现代技术中的重要组成部分。例如,在雷达系统中,klystron提供了必要的功率,以便将信号传输到远距离,从而有效地检测和跟踪物体。同样,在卫星通信中,klystron确保信号能够以最小的损失进行传输和接收,从而保持通信的质量和可靠性。此外,klystron还在科学研究中找到了应用。粒子加速器,通常用于物理实验,常常利用klystron生成加速粒子至接近光速所需的高频信号。这种能力导致了粒子物理学领域的突破性发现,并促进了我们对物质基本组成部分的理解。尽管技术不断进步,klystron仍在各个行业中发挥着重要作用。其可靠性和效率使其成为高功率应用的首选。然而,值得注意的是,随着固态设备的出现,正在进行研究以寻找可能取代klystron的替代技术。然而,klystron独特的特性意味着它在可预见的未来仍将是许多系统中的重要组成部分。总之,klystron不仅仅是一项技术;它代表了电子学历史上的重要发展。其放大微波信号的能力对各个领域产生了深远的影响,从通信到科学研究。随着我们继续创新并推动技术的边界,klystron的遗产无疑将影响未来电子工程及其他领域的进步。