isotopes
简明释义
n. [核]同位素(isotope 的复数);核素
英英释义
单词用法
稳定同位素 | |
放射性同位素 |
同义词
核素 | 不同的核素可以具有不同的核特性。 | ||
变体 | The variants of this element are used in various scientific applications. | 这种元素的变体被用于各种科学应用。 | |
放射性同位素 | 放射性同位素通常用于医学成像。 |
反义词
稳定元素 | 稳定元素没有不同数量的中子。 | ||
非同位素 | Non-isotopes refer to elements that do not have isotopic variations. | 非同位素是指没有同位素变体的元素。 |
例句
1.Carbon dating relies on the ratio of carbon-14 isotopes to determine the age of organic materials.
碳定年法依赖于碳-14同位素的比例来确定有机材料的年龄。
2.In nuclear reactors, certain isotopes are used as fuel to generate energy.
在核反应堆中,某些同位素被用作燃料来产生能量。
3.Scientists often study various isotopes to understand the age of geological formations.
科学家经常研究各种同位素以了解地质构造的年龄。
4.Different isotopes of hydrogen include protium, deuterium, and tritium.
氢的不同同位素包括氕、氘和氚。
5.Medical imaging techniques often use radioactive isotopes to visualize internal organs.
医学成像技术通常使用放射性同位素来可视化内部器官。
作文
Isotopes play a crucial role in various scientific fields, particularly in chemistry and physics. To understand the significance of isotopes, we must first define what they are. Isotopes are variants of a particular chemical element that have the same number of protons but different numbers of neutrons in their nuclei. This difference in neutron count results in varying atomic masses for these elements. For example, carbon has two stable isotopes: carbon-12, which has six neutrons, and carbon-14, which has eight neutrons. Although both are forms of carbon, their physical properties and behaviors can differ significantly due to their mass differences.The study of isotopes is essential in many areas of research. In the field of archaeology, scientists use carbon dating, which relies on the radioactive decay of carbon-14, to determine the age of ancient artifacts. By measuring the amount of carbon-14 remaining in a sample, researchers can estimate when the organism died, providing invaluable insights into human history and prehistoric life.In medicine, isotopes are utilized in diagnostic imaging and treatment. Radioactive isotopes such as iodine-131 are used to treat thyroid cancer and to diagnose various medical conditions. The unique properties of these isotopes allow doctors to visualize internal organs and detect abnormalities, leading to early diagnosis and better patient outcomes.Moreover, isotopes are also significant in environmental science. Scientists analyze stable isotopes of oxygen and hydrogen in water samples to study climate change and track water sources. By understanding the patterns of isotopes in nature, researchers can gather data on historical climate conditions and predict future changes, helping societies to prepare for environmental challenges.In nuclear physics, the behavior of isotopes under certain conditions is crucial for understanding nuclear reactions. For instance, the process of nuclear fission relies on specific isotopes like uranium-235. Understanding how these isotopes behave allows scientists to develop nuclear energy technologies and ensure safe handling of radioactive materials.Despite their benefits, isotopes also pose potential risks. The radioactive isotopes can be hazardous to health and the environment if not managed properly. Therefore, strict regulations and safety protocols are in place to handle these materials responsibly. Researchers and practitioners must continually assess the risks associated with the use of isotopes in their work.In conclusion, isotopes are vital components in various scientific disciplines, offering insights that enhance our understanding of the world. From dating ancient artifacts to diagnosing diseases and studying climate change, the applications of isotopes demonstrate their importance in advancing knowledge and technology. As we continue to explore the properties and potential uses of isotopes, it is essential to balance innovation with safety, ensuring that these powerful tools are used for the benefit of humanity. Their unique characteristics will undoubtedly continue to shape scientific research and practical applications for years to come.
同位素在各个科学领域中发挥着至关重要的作用,尤其是在化学和物理学中。要理解同位素的重要性,我们首先必须定义它们是什么。同位素是某一特定化学元素的变体,它们具有相同数量的质子,但在原子核中有不同数量的中子。这种中子数的差异导致这些元素的原子质量不同。例如,碳有两种稳定的同位素:碳-12,具有六个中子,以及碳-14,具有八个中子。尽管这两者都是碳的形式,但由于其质量差异,它们的物理性质和行为可能会显著不同。同位素的研究在许多研究领域中至关重要。在考古学领域,科学家利用碳测年法,这依赖于碳-14的放射性衰变,来确定古代文物的年龄。通过测量样本中剩余的碳-14量,研究人员可以估算生物体死亡的时间,从而为人类历史和史前生活提供宝贵的见解。在医学领域,同位素被用于诊断成像和治疗。放射性同位素如碘-131被用于治疗甲状腺癌以及诊断各种医疗条件。这些同位素的独特性质使医生能够可视化内部器官并检测异常,促进早期诊断和改善患者结果。此外,同位素在环境科学中也很重要。科学家分析水样中的稳定同位素氧和氢,以研究气候变化和追踪水源。通过理解自然界中同位素的模式,研究人员可以收集关于历史气候条件的数据,并预测未来的变化,帮助社会为环境挑战做好准备。在核物理学中,同位素在特定条件下的行为对于理解核反应至关重要。例如,核裂变过程依赖于特定的同位素如铀-235。了解这些同位素的行为使科学家能够开发核能技术,并确保安全处理放射性材料。尽管有其好处,同位素也可能带来潜在风险。如果管理不当,放射性同位素可能对健康和环境构成危害。因此,严格的法规和安全协议已被制定,以负责任地处理这些材料。研究人员和从业者必须不断评估与使用同位素相关的风险。总之,同位素是各种科学学科中的重要组成部分,提供了增强我们对世界理解的见解。从测定古代文物的年代到诊断疾病和研究气候变化,同位素的应用展示了它们在推动知识和技术方面的重要性。随着我们继续探索同位素的性质和潜在用途,平衡创新与安全至关重要,确保这些强大的工具为人类的利益服务。它们的独特特性无疑将继续塑造未来几年的科学研究和实际应用。