tesseral
简明释义
镶嵌物的
镶嵌物似的
英英释义
Relating to or resembling a tessera, which is a small tile used in mosaics. | 与马赛克中使用的小瓷砖(tessera)有关或相似的。 |
Pertaining to the arrangement or structure of tesserae in a mosaic pattern. | 与马赛克图案中瓷砖的排列或结构有关。 |
单词用法
tesseral 结构 | |
tesseral 几何 | |
tesseral 形式 | |
tesseral 排列 | |
tesseral 分区 | |
tesseral 网格 |
同义词
反义词
线性的 | The linear model simplifies the complex relationships in the data. | 线性模型简化了数据中的复杂关系。 | |
平面的 | In geometry, a planar shape is confined to a two-dimensional surface. | 在几何中,平面形状局限于二维表面。 |
例句
1.In computing these kinds of perturbations, the earth gravitational potential was developed up to llth degree and 11th order for all of zonal, sectorial and tesseral harmonic terms;
在计算这些摄动过程中,地球重力位对带谐、扇谐和田谐项都展开到了第11次和第11阶;
2.The earth gravitational potential was developed up to 11th degree and 11th order for all of zonal and tesseral harmonic terms.
地球重力势对带谐、扇谐和田谐项都展开到了第11次和第11阶。
3.In computing these kinds of perturbations, the earth gravitational potential was developed up to llth degree and 11th order for all of zonal, sectorial and tesseral harmonic terms;
在计算这些摄动过程中,地球重力位对带谐、扇谐和田谐项都展开到了第11次和第11阶;
4.The architect designed a building with a unique tesseral 立方体的 structure that caught everyone's attention.
建筑师设计了一座独特的tesseral 立方体的 结构,吸引了所有人的注意。
5.The artist used tesseral 镶嵌的 shapes in her mosaic to enhance the overall beauty.
艺术家在她的马赛克中使用了tesseral 镶嵌的 形状,以增强整体美感。
6.In mathematics, tesseral 镶嵌的 patterns can create visually appealing designs.
在数学中,tesseral 镶嵌的 图案可以创造出视觉上令人愉悦的设计。
7.In geometry, a tesseral 镶嵌的 figure can fill a space without gaps.
在几何学中,tesseral 镶嵌的 图形可以填充空间而没有间隙。
8.The tesseral 立方体的 design was praised for its complexity and elegance.
这种tesseral 立方体的 设计因其复杂性和优雅性而受到赞赏。
作文
In the realm of mathematics and geometry, the term tesseral refers to the concept of tessellation, which is the covering of a surface with a pattern of one or more geometric shapes, called tiles, with no overlaps and no gaps. This fascinating idea has applications not only in mathematics but also in art, architecture, and nature. Understanding tesseral patterns can provide insights into both theoretical concepts and practical designs.Tessellation is a crucial element in various fields, including computer graphics, where it is used to create visually appealing images and animations. Artists like M.C. Escher have famously employed tesseral patterns in their work, creating intricate designs that captivate viewers. These patterns often challenge our perception of space and symmetry, leading to a deeper appreciation of the mathematical principles underlying artistic expression.Moreover, the natural world is filled with tesseral formations. Honeycombs, for instance, exhibit a remarkable example of tessellation, where hexagonal cells fit together perfectly to maximize space and efficiency. This efficiency is not just aesthetically pleasing but also serves a functional purpose, demonstrating how nature often employs tesseral designs to optimize resources.In architecture, tesseral patterns can be found in tile work, brick layouts, and even in the design of facades. Architects often utilize these patterns to create visually striking buildings that stand out while also serving practical purposes, such as enhancing structural integrity or improving energy efficiency. The interplay between form and function in tesseral designs highlights the importance of geometry in the built environment.Furthermore, the study of tesseral patterns extends into the realm of science, particularly in crystallography. The arrangement of atoms within a crystal can be understood through tessellation principles, allowing scientists to predict the properties of materials based on their atomic structure. This intersection of art, science, and mathematics showcases the universality of tesseral concepts across different disciplines.In conclusion, the term tesseral encompasses a rich tapestry of ideas that bridge mathematics, art, nature, and science. By exploring the various applications and manifestations of tessellation, we gain a greater understanding of how these patterns shape our world. Whether in the intricate designs of a famous artist, the efficient structures found in nature, or the innovative solutions in architecture and materials science, tesseral patterns remind us of the beauty and complexity inherent in the geometry of our surroundings. Embracing the tesseral principles can inspire creativity and foster a deeper appreciation for the interconnectedness of various fields of study.
在数学和几何的领域中,术语tesseral指的是镶嵌的概念,即用一种或多种几何形状(称为瓷砖)覆盖表面,而没有重叠和间隙。这一迷人的想法不仅在数学中有应用,还在艺术、建筑和自然中发挥着作用。理解tesseral模式可以为理论概念和实际设计提供深刻的见解。镶嵌是计算机图形学等多个领域的重要元素,在这些领域中,它被用来创建视觉上吸引人的图像和动画。像M.C.埃舍尔这样的艺术家在他们的作品中著名地采用了tesseral模式,创造出复杂的设计,吸引观众。这些模式常常挑战我们对空间和对称的感知,促使我们更深刻地欣赏潜藏于艺术表达中的数学原理。此外,自然界充满了tesseral的形成。例如,蜂巢展示了镶嵌的显著例子,其中六边形的单元完美地贴合在一起,以最大化空间和效率。这种效率不仅在美学上令人愉悦,而且还具有功能目的,展示了自然如何运用tesseral设计来优化资源。在建筑中,tesseral模式可以在瓷砖工作、砖布局甚至外立面的设计中找到。建筑师通常利用这些模式来创建视觉上引人注目的建筑,使其脱颖而出,同时也服务于实用目的,例如增强结构完整性或提高能效。在形式与功能之间的相互作用中,tesseral设计突显了几何学在建筑环境中的重要性。此外,tesseral模式的研究扩展到科学领域,特别是在晶体学中。晶体内部原子的排列可以通过镶嵌原理来理解,使科学家能够根据原子结构预测材料的性质。这种艺术、科学和数学的交汇展示了tesseral概念在不同学科中的普遍性。总之,术语tesseral包含了一幅丰富的思想画卷,连接了数学、艺术、自然和科学。通过探索镶嵌的各种应用和表现形式,我们对这些模式如何塑造我们的世界有了更深刻的理解。无论是在著名艺术家的复杂设计中、自然界中发现的高效结构中,还是在建筑和材料科学中的创新解决方案中,tesseral模式提醒我们周围几何的美丽和复杂性。拥抱tesseral原则可以激发创造力,并促进对各个研究领域之间相互关联的更深刻的欣赏。