cubic
简明释义
adj. 立方的;立方体的,立方形的;(量或变量的)三次的
【名】 (Cubic)(罗)库比克(人名)
英英释义
与立方体相关,或具有立方体的形状。 | |
In mathematics, pertaining to a quantity raised to the third power. | 在数学中,指一个数量提升到三次方。 |
单词用法
三次样条;三次样条曲线(线图);三次仿样函数 | |
[材料学]立方氮化硼 |
同义词
反义词
线性的 | 这个线性方程描述了一条直线。 | ||
平面的 | 平面表面使得绘图变得简单。 |
例句
1.7 million cubic meters of concrete were used during the construction.
7百万立方米的混凝土被用于工程的建设。
2.The exploration capacity would hit 1 trillion cubic meters.
勘探能力将突破1万亿立方米的大关。
3.He added, at this speed, they will be generating more heat per cubic centimeter than a nuclear reactor.
他补充,在这种速度下,每立方厘米产生的热将超过核反应堆。
4.Per capita water consumption was 440.9 cubic meters, down by 0.1 percent.
人均用水量440.9立方米,下降0.1%。
5.A seed only needs one cubic centimeter of soil to grow.
一颗种子只需要一立方厘米的土壤就能生长。
那就是一千立方米。
7.The region may hold 2 quadrillion cubic feet of natural gas.
该地区的天然气储量可能达2千万亿立方英尺。
8.The cubic design of the building gives it a modern look.
建筑的立方设计使其看起来现代。
9.We need a cubic meter of soil for the garden.
我们需要一立方米的土壤来种花园。
10.The volume of the box is 27 cubic meters.
这个箱子的体积是27立方米。
11.A cubic centimeter is a common unit of measurement in science.
一立方厘米是科学中常用的测量单位。
12.The cubic shape of the ice cube makes it easy to stack.
冰块的立方形状使其易于堆叠。
作文
The concept of volume is fundamental in mathematics and science, and one of the most important shapes that we study is the cube. A cube is a three-dimensional shape with equal sides, and its volume can be calculated using the formula V = s³, where 's' is the length of one side. This leads us to the term cubic, which refers to anything related to a cube or having the shape of a cube. Understanding cubic measurements is essential for various applications, from architecture to packaging. For instance, when designing a room, knowing the cubic footage helps determine how much air conditioning is needed or how many furniture pieces can fit comfortably within the space.In the world of mathematics, cubic functions play a significant role. A cubic function is a polynomial of degree three, typically expressed in the form f(x) = ax³ + bx² + cx + d, where a, b, c, and d are constants. The graph of a cubic function can exhibit various shapes, including one or two turning points, and it can model real-world scenarios such as population growth or the trajectory of an object under gravity. The versatility of cubic functions makes them a vital topic in algebra and calculus.Moreover, the cubic nature of certain materials can affect their properties. For example, when studying crystals, the arrangement of atoms in a cubic lattice can determine the crystal's strength and stability. Scientists often explore how cubic structures behave under stress, which is crucial for fields like materials science and engineering. By understanding the cubic properties of materials, engineers can design safer and more efficient structures.In everyday life, we encounter cubic measurements regularly. When purchasing a refrigerator, for instance, we often look at its cubic capacity to ensure it meets our storage needs. Similarly, when buying soil for gardening, we might request it in cubic yards to get the right amount for our garden beds. These practical applications highlight the importance of being familiar with cubic calculations and measurements.In conclusion, the term cubic encapsulates a broad range of concepts that are integral to both academic disciplines and everyday life. From mathematics to material science, understanding cubic dimensions and functions allows us to make informed decisions and solve complex problems. Whether we are calculating the volume of a room or analyzing a cubic equation, the significance of this term cannot be overstated. As we continue to explore the world around us, the principles of cubic geometry and measurement will undoubtedly remain relevant and essential for future generations. Embracing the cubic concept will enhance our comprehension of the universe and improve our practical skills in various fields.
体积的概念在数学和科学中是基础的,我们研究的最重要的形状之一是立方体。立方体是一个三维形状,具有相等的边,其体积可以通过公式 V = s³ 计算,其中 's' 是一条边的长度。这使我们引入了术语 cubic,指任何与立方体相关或具有立方体形状的事物。理解 cubic 测量对于各种应用至关重要,从建筑到包装。例如,在设计房间时,了解 cubic 体积有助于确定需要多少空调或可以舒适放置多少家具。在数学世界中,cubic 函数扮演着重要角色。cubic 函数是一个三次多项式,通常以 f(x) = ax³ + bx² + cx + d 的形式表示,其中 a、b、c 和 d 是常数。cubic 函数的图形可以表现出各种形状,包括一个或两个转折点,并且可以建模现实世界中的场景,例如人口增长或物体在重力下的轨迹。cubic 函数的多样性使其成为代数和微积分中的重要主题。此外,某些材料的 cubic 特性会影响它们的性质。例如,在研究晶体时,原子在 cubic 晶格中的排列可以决定晶体的强度和稳定性。科学家们经常探索 cubic 结构在压力下的行为,这对材料科学和工程等领域至关重要。通过理解材料的 cubic 特性,工程师可以设计更安全、更高效的结构。在日常生活中,我们定期遇到 cubic 测量。例如,在购买冰箱时,我们通常查看其 cubic 容量,以确保它满足我们的存储需求。同样,在购买园艺用土时,我们可能要求以 cubic 码为单位,以获得适合我们花坛的正确数量。这些实际应用突显了熟悉 cubic 计算和测量的重要性。总之,术语 cubic 概括了一系列广泛的概念,这些概念对学术学科和日常生活都是不可或缺的。从数学到材料科学,理解 cubic 尺寸和函数使我们能够做出明智的决策并解决复杂的问题。无论我们是在计算房间的体积还是分析 cubic 方程,这个术语的重要性都不容小觑。随着我们继续探索周围的世界,cubic 几何和测量的原则无疑将继续保持相关性,并对未来几代人至关重要。接受 cubic 概念将增强我们对宇宙的理解,并提高我们在各个领域的实践技能。