massless
简明释义
adj. 无质量的
英英释义
没有质量;缺乏物质或重量。 | |
In physics, referring to particles or objects that are considered to have zero mass in theoretical models. | 在物理学中,指在理论模型中被认为具有零质量的粒子或物体。 |
单词用法
无质量光子 | |
无质量规范玻色子 | |
无质量极限 | |
无质量理论 | |
无质量近似 | |
无质量场 |
同义词
反义词
巨大的 | 那座巨大的建筑在天际线上高耸入云。 | ||
重的 | 他努力想抬起那个重箱子。 | ||
有重量的 | 那条加重的毛毯帮助她晚上感到更安全。 |
例句
1.Let's call it a massless spring.
我们叫它无质量弹簧。
2.The Standard Model said they should be massless.
标准模型说他们应当没有质量。
3.We call that a massless string.
我们叫它无质量绳。
4.It obeys Hooke's Law, and it is also nearly massless.
它遵循胡克定律,几乎是无质量的。
5.It obeys Hooke's Law, and it is also nearly massless.
它遵循胡克定律,几乎是无质量的。
6.The idea of massless 无质量的 particles is crucial for understanding the behavior of electromagnetic waves.
无质量的粒子概念对于理解电磁波的行为至关重要。
7.The concept of massless 无质量的 particles helps simplify equations in quantum mechanics.
无质量的粒子概念有助于简化量子力学中的方程。
8.In theoretical physics, a photon is considered a massless 无质量的 particle that travels at the speed of light.
在理论物理中,光子被认为是一种无质量的粒子,以光速传播。
9.In a vacuum, massless 无质量的 particles like neutrinos can travel indefinitely without losing energy.
在真空中,像中微子这样的无质量的粒子可以无限期地旅行而不会失去能量。
10.In certain models of string theory, strings can be massless 无质量的 under specific conditions.
在某些弦理论模型中,弦在特定条件下可以是无质量的。
作文
In the realm of physics, the concept of a massless particle plays a crucial role in our understanding of the universe. A massless particle is defined as one that has no mass and, therefore, moves at the speed of light. This idea is fundamental to the theory of relativity proposed by Albert Einstein, which revolutionized our comprehension of space and time. The most prominent example of a massless particle is the photon, the basic unit of light. Photons travel through the vacuum of space at an incredible speed, allowing us to observe distant stars and galaxies. Understanding massless particles helps us delve deeper into the fabric of reality. For instance, the existence of massless particles leads to fascinating implications in quantum mechanics. In this field, particles can exhibit both wave-like and particle-like properties, a phenomenon known as wave-particle duality. The massless nature of photons allows them to behave like waves, enabling phenomena such as interference and diffraction, which are essential for technologies like lasers and fiber optics. Moreover, the concept of massless particles extends beyond just photons. Gluons, the particles responsible for holding quarks together within protons and neutrons, are also considered massless. This characteristic is vital for the strong force, one of the four fundamental forces of nature. Without massless gluons, atomic nuclei would not be stable, and the matter as we know it would not exist. Thus, massless particles are not only theoretical constructs; they are integral to the structure of matter itself. The implications of massless particles also reach into the realms of cosmology and astrophysics. For example, the cosmic microwave background radiation, which is a remnant from the Big Bang, consists of photons that have traveled through the universe for billions of years. These massless particles carry information about the early universe, helping scientists piece together the history of cosmic evolution. By studying the properties of these massless particles, researchers can glean insights into the formation of galaxies, the expansion of the universe, and even the nature of dark matter and dark energy. In conclusion, the study of massless particles is not merely an academic exercise; it is a gateway to understanding the fundamental principles that govern our universe. From the behavior of light to the stability of matter, massless particles play a pivotal role in shaping the physical laws that dictate our reality. As we continue to explore the mysteries of the cosmos, the significance of massless particles will undoubtedly remain a cornerstone of scientific inquiry, guiding us toward new discoveries and deeper knowledge of the universe we inhabit.
在物理学领域,massless粒子的概念在我们理解宇宙中发挥着至关重要的作用。massless粒子被定义为没有质量的粒子,因此以光速移动。这个想法是阿尔伯特·爱因斯坦提出的相对论的基础,彻底改变了我们对空间和时间的理解。最显著的例子是光子,光的基本单位。光子在真空中以惊人的速度传播,使我们能够观察遥远的星星和星系。理解massless粒子帮助我们更深入地探讨现实的本质。例如,massless粒子的存在在量子力学中带来了迷人的影响。在这个领域,粒子可以表现出波动性和粒子性,这种现象被称为波粒二象性。massless光子的特性使它们能够像波一样行为,使干涉和衍射等现象成为可能,这对于激光和光纤技术至关重要。此外,massless粒子的概念不仅限于光子。胶子是负责将夸克结合在一起的粒子,它们也被认为是massless的。这一特性对于强相互作用力至关重要,强相互作用力是自然界四种基本力之一。没有massless胶子,原子核将不稳定,物质将无法存在。因此,massless粒子不仅仅是理论构想;它们是物质结构的关键。massless粒子的影响还延伸到宇宙学和天体物理学的领域。例如,宇宙微波背景辐射是大爆炸留下的遗迹,由光子组成,这些光子已经在宇宙中传播了数十亿年。这些massless粒子携带着关于早期宇宙的信息,帮助科学家拼凑宇宙演化的历史。通过研究这些massless粒子的性质,研究人员可以获得有关星系形成、宇宙膨胀甚至暗物质和暗能量本质的见解。总之,研究massless粒子不仅仅是学术练习;它是理解支配我们宇宙的基本原则的一个入口。从光的行为到物质的稳定性,massless粒子在塑造决定我们现实的物理法则中扮演着关键角色。随着我们继续探索宇宙的奥秘,massless粒子的意义无疑将继续成为科学探究的基石,引导我们走向新的发现和对我们所居住的宇宙更深刻的理解。