coulombic

简明释义

[ˌkuːlˈɒmbɪk][ˌkuːlˈɒmbɪk]

adj. 库仑的;库仑定律的

英英释义

Relating to or denoting the force between charged particles, as described by Coulomb's law.

与带电粒子之间的力有关或表示,正如库仑定律所描述的那样。

单词用法

同义词

electrostatic

静电的

Electrostatic forces are significant in molecular interactions.

静电力在分子相互作用中是重要的。

ionic

离子的

Ionic bonds are formed due to coulombic attractions between oppositely charged ions.

离子键是由于相反电荷离子之间的库仑吸引力形成的。

charge-related

与电荷相关的

Charge-related interactions play a crucial role in the behavior of particles.

与电荷相关的相互作用在粒子的行为中起着关键作用。

反义词

repulsive

排斥的

The forces between like charges are repulsive.

同种电荷之间的力是排斥的。

non-coulombic

非库仑的

In some materials, the interactions are non-coulombic due to the presence of other forces.

在某些材料中,由于存在其他力,作用是非库仑的。

例句

1.The classical DLVO theory predicts that an isolated pair of like charged colloidal spheres in electrolyte should experience a purely repulsive Coulombic interaction.

经典的DLVO理论认为,电解质溶液中一对孤立、带同种电荷的球型胶粒将表现出纯粹的库仑排斥。

2.Changes in propionate proportion within the examined range did not cause much variation in coulombic efficiency.

实验范围内丙酸比例的变化对库仑效率没有太大的影响。

3.The attractive energy is just the potential energy, Coulombic potential.

引力能就是电势能,库伦电势。

4.This is not a Coulombic force.

它不是库仑力。

5.The classical DLVO theory predicts that an isolated pair of like charged colloidal spheres in electrolyte should experience a purely repulsive Coulombic interaction.

经典的DLVO理论认为,电解质溶液中一对孤立、带同种电荷的球型胶粒将表现出纯粹的库仑排斥。

6.A drastic drop in coulombic efficiency occurred when the proportion of butyrate exceeded 26%.

当丁酸的量超过26%时,库仑效率急剧降低。

7.The coulombic 库仑的 interactions in ionic compounds are responsible for their high melting points.

离子化合物中的coulombic 库仑的 作用力是它们高熔点的原因。

8.The coulombic 库仑的 force between two charged particles can be calculated using Coulomb's law.

两个带电粒子之间的coulombic 库仑的 力可以通过库仑定律计算。

9.The coulombic 库仑的 attraction between oppositely charged ions leads to the formation of stable compounds.

相反带电离子之间的coulombic 库仑的 吸引力导致稳定化合物的形成。

10.In electrochemistry, the coulombic 库仑的 efficiency of a battery is crucial for determining its performance.

在电化学中,电池的coulombic 库仑的 效率对于确定其性能至关重要。

11.Understanding coulombic 库仑的 forces helps in predicting the behavior of molecules in an electric field.

理解coulombic 库仑的 力有助于预测分子在电场中的行为。

作文

Understanding the fundamental principles of physics is essential for grasping the complexities of our universe. One crucial concept in electrostatics is the idea of coulombic forces, which describe the interactions between charged particles. These forces play a significant role in various phenomena, from the behavior of atoms to the formation of chemical bonds. In this essay, we will explore the nature of coulombic forces, their mathematical representation, and their implications in both theoretical and practical applications.At its core, the term coulombic originates from Charles-Augustin de Coulomb, a French physicist who formulated Coulomb's Law in the 18th century. This law states that the magnitude of the force between two point charges is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as F = k * (|q1 * q2|) / r², where F is the force, k is Coulomb's constant, q1 and q2 are the amounts of charge, and r is the distance separating the charges. This equation encapsulates the essence of coulombic interactions, highlighting how charges influence one another through an invisible force field.The implications of coulombic forces extend far beyond simple point charges. In atomic physics, these forces govern the attraction between electrons and protons, which is fundamental to the structure of atoms. The balance of coulombic attraction and repulsion among electrons in an atom determines its stability and reactivity. For instance, when atoms bond to form molecules, it is often the result of the interplay between coulombic forces that leads to the sharing or transfer of electrons. This is the basis for understanding ionic and covalent bonding, vital concepts in chemistry.In addition to atomic interactions, coulombic forces also have significant implications in materials science and engineering. For example, the properties of insulators and conductors can be explained through the behavior of coulombic forces at the atomic level. Conductors allow electrons to move freely due to the weaker coulombic attraction between their electrons and nuclei, while insulators hold onto their electrons more tightly, preventing the flow of electricity. Understanding these principles is crucial for developing new materials with desired electrical properties.Furthermore, coulombic forces play a pivotal role in many technological applications. For instance, in the field of electronics, the design of capacitors relies heavily on coulombic interactions. Capacitors store electrical energy by accumulating opposite charges on two conductive plates, and the efficiency of this process is determined by the strength of the coulombic forces acting between the charges. Similarly, in the realm of nanotechnology, manipulating coulombic forces allows scientists to design nanoscale devices with unprecedented precision.In conclusion, the concept of coulombic forces is fundamental to our understanding of the physical world. From the atomic scale to macroscopic applications, these forces dictate the behavior of charged particles and influence a myriad of scientific disciplines. By studying coulombic interactions, we not only gain insight into the nature of matter but also unlock the potential for innovative technologies that shape our daily lives.

理解物理学的基本原理对于掌握我们宇宙的复杂性至关重要。电静电学中的一个关键概念是库仑力的概念,它描述了带电粒子之间的相互作用。这些力在各种现象中发挥着重要作用,从原子的行为到化学键的形成。在这篇文章中,我们将探讨库仑力的性质、它们的数学表示及其在理论和实际应用中的意义。从根本上说,库仑这个词源于18世纪的法国物理学家查尔斯-奥古斯丁·库仑,他制定了库仑定律。该定律指出,两点电荷之间的力的大小与电荷的大小的乘积成正比,与它们之间距离的平方成反比。数学上可以表示为F = k * (|q1 * q2|) / r²,其中F是力,k是库仑常数,q1和q2是电荷量,r是分隔电荷的距离。这个方程概括了库仑相互作用的本质,突显了电荷如何通过无形的力场相互影响。库仑力的影响远远超出了简单的点电荷。在原子物理学中,这些力支配着电子与质子之间的吸引力,这是原子结构的基础。库仑吸引力和电子之间的排斥力的平衡决定了原子的稳定性和反应性。例如,当原子结合形成分子时,通常是由于库仑力之间的相互作用导致电子的共享或转移。这是理解离子键和共价键的基础,是化学中的重要概念。除了原子间的相互作用外,库仑力在材料科学和工程领域也具有重要意义。例如,导体和绝缘体的特性可以通过原子层面的库仑力行为进行解释。导体允许电子自由移动,因为它们的电子与原子核之间的库仑吸引力较弱,而绝缘体则更紧密地保持其电子,阻止电流的流动。理解这些原理对于开发具有所需电气特性的新能源材料至关重要。此外,库仑力在许多技术应用中也发挥着关键作用。例如,在电子学领域,电容器的设计在很大程度上依赖于库仑相互作用。电容器通过在两个导电板上积累相反的电荷来储存电能,这一过程的效率取决于作用于电荷之间的库仑力的强度。同样,在纳米技术领域,操纵库仑力使科学家能够以空前的精确度设计纳米级设备。总之,库仑力的概念是我们理解物质世界的基础。从原子尺度到宏观应用,这些力支配着带电粒子的行为,并影响着无数科学学科。通过研究库仑相互作用,我们不仅获得了对物质本质的深刻见解,还开启了塑造我们日常生活的创新技术的潜力。