absolute error; error absolute
简明释义
绝对误差
英英释义
例句
1.The absolute error in our measurement was calculated to be 0.5 cm.
我们测量的绝对误差计算为0.5厘米。
2.The absolute error can be determined by subtracting the true value from the measured value.
可以通过从测量值中减去真实值来确定绝对误差。
3.To improve accuracy, we need to minimize the absolute error in our results.
为了提高准确性,我们需要尽量减少结果中的绝对误差。
4.In this experiment, the absolute error of the temperature reading was significant.
在这个实验中,温度读数的绝对误差很大。
5.Our analysis showed that the absolute error increased with larger measurements.
我们的分析显示,随着测量值的增大,绝对误差也在增加。
作文
In the realm of mathematics and statistics, precision is paramount. One of the critical concepts that aids in understanding the accuracy of measurements is the notion of absolute error. The term absolute error refers to the difference between the actual value and the measured value, without considering the direction of the deviation. It provides a straightforward way to quantify how far off a measurement is from the true value. For instance, if a thermometer reads 98 degrees Fahrenheit when the actual temperature is 100 degrees, the absolute error would be 2 degrees. This helps in assessing the reliability of the measuring instrument and can lead to improvements in its accuracy.Understanding absolute error is essential not only in scientific experiments but also in everyday life. For example, when cooking, precise measurements are crucial for a successful recipe. If a cook measures out 1 cup of flour but the actual amount needed is 1.5 cups, the absolute error in this case is 0.5 cups. Knowing this error allows the cook to adjust the recipe accordingly, ensuring better results.Furthermore, the concept of absolute error extends beyond simple measurements. In fields like engineering and finance, where decisions are based on numerical data, understanding the absolute error can significantly impact outcomes. Engineers rely on precise calculations to ensure safety and functionality in their designs. A small absolute error in calculations could lead to structural failures or inefficiencies. Similarly, in finance, investors analyze various metrics to make informed decisions; knowing the absolute error in financial forecasts can help them gauge risk and make better investment choices.However, it is important to note that while absolute error provides valuable information about the accuracy of a single measurement, it does not give insight into the relative size of the error in comparison to the actual value. This is where the concept of relative error comes into play. The relative error is calculated by dividing the absolute error by the true value, providing a percentage that reflects the error's significance in relation to the actual measurement. This dual approach, utilizing both absolute error and relative error, offers a more comprehensive view of measurement accuracy.In conclusion, grasping the concept of absolute error is vital for anyone engaged in activities requiring precise measurements. Whether in scientific research, cooking, engineering, or finance, understanding absolute error allows for better decision-making and improved outcomes. By acknowledging and correcting for absolute error, individuals and professionals alike can enhance their work's quality and reliability. As we continue to navigate a world driven by data and measurements, the importance of accurately assessing absolute error cannot be overstated. By mastering this concept, we equip ourselves with the tools necessary to achieve greater precision and success in our endeavors.
在数学和统计学的领域中,精确性至关重要。帮助理解测量准确性的关键概念之一是绝对误差的概念。术语绝对误差指的是实际值与测量值之间的差异,不考虑偏差的方向。它提供了一种简单的方法来量化测量与真实值之间的偏差程度。例如,如果一个温度计显示98华氏度,而实际温度为100华氏度,则绝对误差为2华氏度。这有助于评估测量仪器的可靠性,并可以改进其准确性。理解绝对误差不仅在科学实验中至关重要,也在日常生活中同样重要。例如,在烹饪时,精确的测量对于成功的食谱至关重要。如果厨师测量出1杯面粉,但实际需要的量是1.5杯,那么在这种情况下的绝对误差为0.5杯。了解这个误差使厨师能够相应地调整食谱,从而确保更好的结果。此外,绝对误差的概念不仅限于简单的测量。在工程和金融等领域,决策基于数值数据,理解绝对误差可以显著影响结果。工程师依赖精确的计算来确保设计的安全性和功能性。计算中的小绝对误差可能导致结构故障或效率低下。同样,在金融领域,投资者分析各种指标以做出明智的决策;了解财务预测中的绝对误差可以帮助他们评估风险并做出更好的投资选择。然而,需要注意的是,虽然绝对误差提供了单个测量准确性的重要信息,但它并未提供关于误差相对于实际值的相对大小的见解。这就是相对误差概念发挥作用的地方。相对误差是通过将绝对误差除以真实值来计算的,提供了反映误差相对于实际测量意义的百分比。这种双重方法,利用绝对误差和相对误差,提供了测量准确性更全面的视角。总之,掌握绝对误差的概念对任何从事需要精确测量活动的人来说都是至关重要的。无论是在科学研究、烹饪、工程还是金融领域,理解绝对误差都能更好地进行决策并改善结果。通过承认和纠正绝对误差,个人和专业人士都可以提高工作质量和可靠性。随着我们继续在一个以数据和测量为驱动的世界中航行,准确评估绝对误差的重要性不容小觑。通过掌握这一概念,我们为自己装备了实现更高精度和成功所需的工具。
相关单词