angstrom
简明释义
n. 埃(光谱线波长单位)
英英释义
A unit of length equal to one ten-billionth of a meter, commonly used to measure wavelengths of light and atomic scales. | 一种长度单位,等于一十亿分之一米,常用于测量光的波长和原子尺度。 |
单词用法
以埃为单位测量 | |
埃尺度 | |
埃分辨率 | |
一个angstrom等于10^-10米 | |
光的波长以埃为单位 | |
以埃为单位测量的原子尺寸 |
同义词
反义词
米 | 这张桌子的长度是2米。 | ||
厘米 | 这株植物的高度大约是30厘米。 |
例句
1.Linux boot messages follow, and then finally the Angstrom logo and a login prompt, as shown in Listing 6.
下面是Linux引导消息,最后是Angstrom徽标和一个登录提示,如清单6所示。
2.It was named after the Swedish physicist Anders Angstrom.
它取名于瑞典物理学家埃格·斯特朗。
3.Two of the Angstrom researchers are investigating optical-communications schemes that use more practical materials.
Angstrom的两名研究员正在研究采用更实用材料的光通信方案。
4.The angstrom has now been largely replaced by the nanometer.
目前,该单位基本已被纳米所取代。
5.One ext3 partition labeled Angstrom that takes up the rest of the card's capacity.
一个ext3分区,标记为angstrom,占用卡的其余容量。
6.Results show that this process can reach surface roughness with angstrom dimension.
结果表明,这种抛光工艺能获得原子级的超光滑表面。
7.In X-ray crystallography, distances are often measured in Å.
在X射线晶体学中,距离通常以埃为单位进行测量。
8.The wavelength of visible light is typically around 4000 to 7000 Å.
可见光的波长通常在4000到7000埃之间。
9.A typical atom has a size on the order of 1 to 3 Å.
一个典型的原子的大小大约在1到3埃。
10.The resolution of electron microscopes can reach up to 1 Å.
电子显微镜的分辨率可以达到1埃。
11.The bond length between carbon atoms is about 1.54 Å.
碳原子之间的键长大约为1.54埃。
作文
The concept of measurement is fundamental in the field of science, particularly in physics and chemistry. One of the smallest units of measurement that often comes up in discussions about atomic and molecular dimensions is the angstrom. An angstrom is a unit of length equal to one ten-billionth of a meter (10^-10 meters) or 0.1 nanometers. This tiny measurement is essential for understanding the scale at which atoms and molecules operate. In the realm of chemistry, the angstrom is particularly useful when discussing the size of atoms, the distances between them, and the dimensions of various molecular structures. For instance, the bond length between two hydrogen atoms in a hydrogen molecule is approximately 0.74 angstroms. This highlights just how small these measurements are, as they are not something we can perceive with the naked eye. Moreover, in the field of crystallography, which studies the arrangement of atoms in crystalline solids, the angstrom plays a crucial role. When scientists analyze crystal structures using X-ray diffraction, they often report measurements in angstroms. This allows researchers to determine the precise arrangement of atoms within a crystal lattice, which is vital for understanding the material's properties and behaviors. Understanding the angstrom also helps in fields such as nanotechnology, where the manipulation of materials at the atomic or molecular level is key. In nanotechnology, engineers and scientists design and create devices and materials on the nanoscale, which often requires measurements in angstroms to ensure accuracy and precision. Furthermore, the angstrom is not only limited to physical sciences. It has applications in biology, particularly in the study of biomolecules like DNA and proteins. The dimensions of these biological macromolecules are often measured in angstroms, allowing scientists to understand their structure and function better. For example, the double helix structure of DNA has a diameter of about 20 angstroms, which is critical for its functionality in genetic coding and replication. In summary, the angstrom is a vital unit of measurement that enables scientists across various disciplines to communicate effectively about the incredibly small scales at which atoms and molecules exist. Its significance extends from chemistry to physics, nanotechnology, and biology, emphasizing the interconnectedness of these fields through the lens of atomic and molecular dimensions. By grasping the importance of the angstrom, we gain insight into the fundamental building blocks of matter and the intricate relationships that govern the natural world. Understanding this unit not only enhances our comprehension of scientific concepts but also opens doors to innovations that rely on manipulating materials at the atomic level. As we continue to explore and uncover the mysteries of the universe, the angstrom will remain a cornerstone of scientific measurement and discovery.
测量的概念在科学领域,特别是物理和化学中是基础性的。一个经常出现在关于原子和分子尺寸讨论中的最小测量单位是埃。埃是一个长度单位,等于十亿分之一米(10^-10米)或0.1纳米。这个微小的测量对于理解原子和分子运作的尺度至关重要。在化学领域,埃在讨论原子的大小、它们之间的距离以及各种分子结构的维度时特别有用。例如,两个氢原子在氢分子中的键长大约为0.74埃。这突显了这些测量是多么微小,因为它们不是我们肉眼可以感知的。此外,在晶体学领域,研究晶体固体中原子的排列,埃扮演着关键角色。当科学家使用X射线衍射分析晶体结构时,他们通常以埃为单位报告测量。这使研究人员能够确定晶体格子内原子的精确排列,这对理解材料的性质和行为至关重要。理解埃也有助于纳米技术领域,在这里,原子或分子水平的材料操控是关键。在纳米技术中,工程师和科学家设计并创建纳米级的设备和材料,这往往需要以埃为单位进行测量,以确保准确性和精确性。此外,埃不仅限于物理科学。它在生物学中也有应用,特别是在研究像DNA和蛋白质这样的生物大分子时。这些生物大分子的尺寸通常以埃为单位进行测量,使科学家能够更好地理解它们的结构和功能。例如,DNA的双螺旋结构直径约为20埃,这对其在遗传编码和复制中的功能至关重要。总之,埃是一个重要的测量单位,使各个学科的科学家能够有效地沟通原子和分子存在的极小尺度。它的重要性从化学到物理、纳米技术和生物学,强调了通过原子和分子维度透视这些领域之间的相互联系。通过掌握埃的重要性,我们更深入地理解了物质的基本构建块以及支配自然世界的复杂关系。理解这个单位不仅增强了我们对科学概念的理解,还为依赖于在原子水平上操控材料的创新打开了大门。随着我们继续探索和揭示宇宙的奥秘,埃将始终是科学测量和发现的基石。