polarogram

简明释义

[pəʊˈlærəˌɡræm][poʊˈlærəɡræm]

n. [分化] 极谱图

英英释义

A polarogram is a graphical representation of the current that flows through an electrochemical cell as a function of the applied voltage, typically used in polarography to analyze the concentration of substances.

极谱图是电流随施加电压变化而变化的图形表示,通常用于极谱法分析物质浓度。

单词用法

polarographic analysis

极谱分析

polarographic method

极谱法

record a polarogram

记录极谱图

interpret the polarogram

解释极谱图

同义词

voltammogram

伏安图

The voltammogram is used to analyze the redox properties of a compound.

伏安图用于分析化合物的氧还原特性。

electrochemical curve

电化学曲线

The electrochemical curve provides insights into the reaction kinetics.

电化学曲线提供了反应动力学的见解。

反义词

non-polarogram

非极性图

The non-polarogram analysis showed no significant trends.

非极性图分析没有显示出显著的趋势。

random signal

随机信号

In the presence of noise, the random signal can obscure the results.

在噪声存在的情况下,随机信号可能会掩盖结果。

例句

1.This paper, according to the process of double-bonded carbonic acid reduction, the isomerism of hydrazone & alkali reduction, depicts the current polarogram research of double-bonded carbonic acid.

本文从碳氮双键的还原过程、腙的异构和希夫碱的还原三个方面概述了碳氮双键的极谱研究现状 。

2.This paper, according to the process of double-bonded carbonic acid reduction, the isomerism of hydrazone & alkali reduction, depicts the current polarogram research of double-bonded carbonic acid.

本文从碳氮双键的还原过程、腙的异构和希夫碱的还原三个方面概述了碳氮双键的极谱研究现状 。

3.By interpreting the polarogram, researchers could identify the redox potentials of various compounds.

通过解读极谱图,研究人员能够识别各种化合物的氧还原电位。

4.The scientist analyzed the polarogram to determine the concentration of the metal ions in the solution.

科学家分析了极谱图以确定溶液中金属离子的浓度。

5.In electrochemistry, a polarogram is often used to study the behavior of electrodes.

在电化学中,极谱图常用于研究电极的行为。

6.The polarogram showed distinct peaks corresponding to different analytes present in the sample.

极谱图显示出与样品中不同分析物对应的明显峰值。

7.The technician recorded the polarogram during the experiment to monitor the reaction progress.

技术员在实验过程中记录了极谱图以监测反应进展。

作文

The study of electrochemistry has opened up numerous avenues for understanding chemical reactions and processes at the molecular level. One of the critical techniques used in this field is known as a polarogram, which is a type of voltammetric measurement that provides valuable information about the concentration of analytes in solution. A polarogram is generated by plotting current against voltage, allowing scientists to observe the reduction and oxidation processes of different species in an electrochemical cell. This method has proven essential for various applications, including environmental monitoring, pharmaceuticals, and food safety.To better understand the significance of a polarogram, it is essential to grasp the principles behind voltammetry. In essence, voltammetry involves applying a potential to an electrode and measuring the resulting current. As the potential changes, different chemical species in the solution will either gain or lose electrons, leading to observable peaks in the polarogram. Each peak corresponds to a specific reaction and can be analyzed to determine the identity and concentration of the analyte present.One of the advantages of using a polarogram is its sensitivity. It can detect trace amounts of substances, making it invaluable in fields like environmental science, where pollutants may exist in very low concentrations. For instance, researchers can use a polarogram to monitor heavy metals in water samples, providing critical data for assessing water quality and safety. Additionally, the technique can be employed in clinical laboratories to analyze blood samples for various biomarkers, aiding in the diagnosis and monitoring of diseases.Furthermore, the interpretation of a polarogram requires a solid understanding of the underlying electrochemical principles. Factors such as the nature of the electrode, the composition of the electrolyte, and the scan rate can all influence the shape and characteristics of the polarogram. By carefully controlling these variables, scientists can optimize their measurements and gain more accurate insights into the electrochemical behaviors of different compounds.In conclusion, the polarogram stands out as a powerful tool in electrochemical analysis. Its ability to provide detailed information about the redox behavior of substances makes it indispensable in various scientific fields. As technology advances and new materials are developed, the applications of polarogram techniques are likely to expand further, paving the way for more innovative solutions to complex problems in chemistry and beyond. Understanding how to interpret and utilize polarograms will continue to be a crucial skill for chemists and researchers alike, ensuring that they can contribute effectively to the ongoing exploration of the molecular world.

电化学的研究为理解分子层面的化学反应和过程开辟了众多途径。在这个领域中,一种被称为极谱图的关键技术被广泛使用,它是一种伏安测量方法,提供有关溶液中分析物浓度的宝贵信息。极谱图是通过绘制电流与电压的关系生成的,使科学家能够观察电化学池中不同物质的还原和氧化过程。这种方法在环境监测、制药和食品安全等多个应用中证明了其重要性。为了更好地理解极谱图的重要性,有必要掌握伏安法背后的原理。伏安法的本质是在电极上施加一个电位,并测量由此产生的电流。随着电位的变化,溶液中的不同化学物质将获得或失去电子,从而导致极谱图中可观察到的峰值。每个峰值对应于特定的反应,可以通过分析这些峰值来确定存在的分析物的身份和浓度。使用极谱图的一大优势是其灵敏度。它可以检测微量物质,这使得它在环境科学等领域中具有不可或缺的价值,因为污染物可能以非常低的浓度存在。例如,研究人员可以使用极谱图监测水样中的重金属,提供评估水质和安全性的关键数据。此外,该技术还可以用于临床实验室分析血液样本中的各种生物标志物,帮助诊断和监测疾病。此外,解读极谱图需要对基础电化学原理有扎实的理解。电极的性质、电解质的组成和扫描速率等因素都可能影响极谱图的形状和特征。通过仔细控制这些变量,科学家可以优化他们的测量,获得对不同化合物电化学行为的更准确的见解。总之,极谱图作为电化学分析中的一种强大工具脱颖而出。它提供关于物质氧化还原行为的详细信息,使其在多个科学领域中不可或缺。随着技术的发展和新材料的开发,极谱图技术的应用可能会进一步扩展,为解决化学及其他领域的复杂问题铺平道路。理解如何解读和利用极谱图将继续成为化学家和研究人员的重要技能,确保他们能够有效地为探索分子世界的持续努力做出贡献。