magnetopause

简明释义

[mæɡˈniːtəˌpɔːz][mæɡˈniːtoʊˌpɔːz]

[地物] 磁层顶

英英释义

The magnetopause is the boundary between a planet's magnetosphere and the solar wind, where the magnetic pressure from the magnetosphere balances the dynamic pressure of the solar wind.

磁层边界是行星磁层与太阳风之间的边界,在此处,磁层的磁压力与太阳风的动态压力相平衡。

单词用法

at the magnetopause

在磁层顶

magnetopause boundary

磁层顶边界

magnetopause current

磁层顶电流

magnetopause region

磁层顶区域

同义词

magnetosheath

磁鞘

The magnetopause is the boundary between the Earth's magnetosphere and the solar wind.

磁层顶是地球磁层与太阳风之间的边界。

反义词

solar wind

太阳风

The solar wind interacts with the Earth's magnetosphere.

太阳风与地球的磁层相互作用。

interstellar medium

星际介质

The interstellar medium contains gas and dust between stars.

星际介质包含恒星之间的气体和尘埃。

例句

1.The analysis shows that this method may be used to identify several types of the discontinuities which may occur at the magnetopause.

分析表明,这种方法可以用来识别磁层顶上可能出现的若干种间断。

2.The first constellations will most likely observe the inner magnetosphere and the dayside magnetopause with each cake-size craft recording the basic characteristics of the plasmas and magnetic fields.

第一个大卫星群可能用来监测磁层内层及昼侧的磁层顶,每个蛋糕般大小的小卫星都将记录各别区域内,电浆与磁场的基本数据。

3.The first constellations will most likely observe the inner magnetosphere and the dayside magnetopause with each cake-size craft recording the basic characteristics of the plasmas and magnetic fields.

第一个大卫星群可能用来监测磁层内层及昼侧的磁层顶,每个蛋糕般大小的小卫星都将记录各别区域内,电浆与磁场的基本数据。

4.The location and intensity of the CF-current on the magnetopause are almost same as the results from the model of the ideal discontinuous surface.

实际磁层顶电流片的位置和强度与我们假设的理想磁层顶间断面计算结果基本吻合。

5.The magnetopause exerts a tremendous influence on magnetic field within the magnetosphere.

太阳风与地磁场相互作用形成的磁层顶对磁层内磁场有重要影响。

6.The fluctuations of solar wind quantities at the magnetopause excite the compressed Alfven waves, which propagate through the collisionless plasma in the tail of magnetosphere.

太阳风的涨落在磁层顶激发压缩阿尔文波,并在磁尾的无碰撞等离子体中传播。

7.This method itself is independent of the normal directions on the magnetopause.

这种方法本身与磁层顶的法线方向无关。

8.By using a two-dimensional compressible MHD model, the local reconnection processes at the dayside magnetopause region are simulated based on the theory of vortex-induced reconnection.

本文用二维可压缩MHD模型,模拟研究了向阳面磁顶区的涡旋诱发重联过程。

9.During geomagnetic storms, the position of the magnetopause can shift significantly, indicating changes in space weather, or 磁opause

在地磁风暴期间,magnetopause的位置可能会显著变化,表明太空天气的变化,这被称为磁opause

10.The region where the solar wind meets the Earth's magnetic field is known as the magnetopause, or 磁opause.

太阳风与地球磁场相遇的区域被称为magnetopause,或磁opause

11.Understanding the dynamics of the magnetopause helps researchers predict space weather events that could impact satellite operations, or 磁opause

理解magnetopause的动态有助于研究人员预测可能影响卫星操作的太空天气事件,这被称为磁opause

12.The magnetopause acts as a shield, protecting the Earth from harmful cosmic radiation, which is also called 磁opause

magnetopause充当保护罩,保护地球免受有害宇宙辐射,这也被称为磁opause

13.Scientists study the magnetopause to understand how solar storms affect our planet's atmosphere, which is referred to as 磁opause

科学家研究magnetopause以了解太阳风暴如何影响我们星球的大气,这被称为磁opause

作文

The concept of the magnetopause is fundamental to our understanding of space physics and the interaction between the solar wind and a planet's magnetic field. The magnetopause, which can be defined as the boundary region between the Earth's magnetic field and the solar wind, plays a crucial role in protecting our planet from harmful cosmic radiation. This invisible barrier is formed by the balance of pressure between the solar wind, a stream of charged particles emitted by the sun, and the magnetic field generated by the Earth itself.When the solar wind reaches the Earth, it exerts pressure on the magnetopause. This pressure can cause the magnetopause to shift and change shape, depending on the intensity of the solar wind at any given time. During periods of high solar activity, such as solar flares or coronal mass ejections, the solar wind can become particularly strong, causing the magnetopause to move closer to the Earth. Conversely, during quieter periods, the magnetopause can extend further out into space.Understanding the dynamics of the magnetopause is essential for several reasons. First, it helps scientists predict space weather events that can impact satellite operations and communications on Earth. For instance, when the magnetopause is compressed, it can lead to increased geomagnetic activity, which can disrupt GPS signals and power grids. By studying the behavior of the magnetopause, researchers can develop models to forecast these disturbances and provide warnings to mitigate their effects.Moreover, the magnetopause is not just a static boundary; it is a dynamic environment where various physical processes occur. For example, at the magnetopause, the solar wind's charged particles can interact with the Earth's magnetic field, leading to phenomena such as magnetic reconnection. This process can release energy and accelerate particles, contributing to the creation of auroras, those beautiful displays of light seen near the polar regions.The study of the magnetopause also has implications beyond Earth. Other planets in our solar system, such as Jupiter and Saturn, have their own magnetopauses, shaped by their unique magnetic fields and interactions with the solar wind. By comparing the magnetopause of different celestial bodies, scientists can gain insights into planetary formation, evolution, and the conditions necessary for sustaining atmospheres.In conclusion, the magnetopause is a critical component of the Earth's magnetosphere, serving as a protective shield against solar wind and cosmic radiation. Its dynamic nature and interaction with solar wind make it a fascinating subject of study in space physics. Understanding the magnetopause not only enhances our knowledge of Earth's space environment but also contributes to our broader understanding of planetary science and the universe. As we continue to explore space, the significance of the magnetopause will remain a key focus for researchers looking to unravel the mysteries of our solar system and beyond.

“磁气层边界”这个概念对我们理解空间物理学以及太阳风与行星磁场之间的相互作用至关重要。磁气层边界可以定义为地球磁场与太阳风之间的边界区域,在保护我们的星球免受有害宇宙辐射方面发挥着关键作用。这个看不见的屏障是由太阳风(由太阳发出的带电粒子流)和地球自身产生的磁场之间的压力平衡形成的。当太阳风到达地球时,它会对磁气层边界施加压力。这种压力可以导致磁气层边界在任何给定时刻根据太阳风的强度而移动和改变形状。在高太阳活动期间,例如太阳耀斑或日冕物质抛射,太阳风可能会变得特别强,导致磁气层边界向地球靠近。相反,在较安静的时期,磁气层边界可以延伸到更远的太空中。理解磁气层边界的动态特性至关重要,原因有几个。首先,它帮助科学家预测可能影响卫星操作和地球通信的空间天气事件。例如,当磁气层边界被压缩时,可能会导致地磁活动增加,从而干扰GPS信号和电网。通过研究磁气层边界的行为,研究人员可以开发模型来预测这些干扰,并提供警告以减轻其影响。此外,磁气层边界不仅仅是一个静态边界;它是一个动态环境,各种物理过程在此发生。例如,在磁气层边界处,太阳风的带电粒子可以与地球的磁场相互作用,导致诸如磁重联等现象。这一过程可以释放能量并加速粒子,促成极光的形成,这些美丽的光芒在极地区域附近可见。对磁气层边界的研究也对地球以外的其他行星具有重要意义。例如,木星和土星等其他行星也有自己的磁气层边界,这些边界受到各自独特的磁场和与太阳风的相互作用的影响。通过比较不同天体的磁气层边界,科学家可以获得有关行星形成、演化及维持大气所需条件的见解。总之,磁气层边界是地球磁层的一个关键组成部分,作为太阳风和宇宙辐射的保护屏障。它的动态特性及其与太阳风的相互作用使其成为空间物理学中的一个迷人研究主题。理解磁气层边界不仅增强了我们对地球空间环境的认识,还有助于我们对行星科学和宇宙的更广泛理解。随着我们继续探索太空,磁气层边界的重要性将始终是研究人员揭示我们太阳系及更远宇宙奥秘的关键焦点。