heptagonal
简明释义
adj. 七边形的;七角的
英英释义
Relating to or having the shape of a heptagon, which is a polygon with seven sides and seven angles. | 与七边形有关或具有七边形的形状,七边形是一个有七条边和七个角的多边形。 |
单词用法
规则七边形 | |
七边形铺砖 | |
七边形对称性 | |
绘制一个七边形图形 | |
构建一个七边形结构 | |
分析七边形图案 |
同义词
七边形 | 七边形的形状常用于建筑设计中。 | ||
七边形(作为名词) | 在几何学中,七边形被称为heptagon。 |
反义词
单边形 | 单边形只有一条边。 | ||
双边形 | In geometry, a digonal figure is often simpler than a heptagonal one. | 在几何学中,双边形通常比七边形简单。 |
例句
1.The heptagonal structure transforms the simple roof terrace into an outdoor room that focuses visitors' attention to the sky above.
七边形的装置将简单的屋顶平台变成了一个户外空间,将人们的视线集中于天空。
2.The heptagonal structure transforms the simple roof terrace into an outdoor room that focuses visitors' attention to the sky above.
七边形的装置将简单的屋顶平台变成了一个户外空间,将人们的视线集中于天空。
3.During the art class, we created a heptagonal (七边形) mural to enhance the classroom's aesthetic.
在美术课上,我们创作了一幅heptagonal (七边形) 的壁画,以提升教室的美感。
4.The game board was designed in a heptagonal (七边形) shape to make it more interesting to play.
游戏板被设计成heptagonal (七边形) 形状,使游戏更加有趣。
5.The park features a heptagonal (七边形) gazebo that offers a panoramic view of the landscape.
公园里有一个heptagonal (七边形) 的凉亭,可以俯瞰到全景风景。
6.The architect designed a stunning building with a unique heptagonal (七边形) shape.
建筑师设计了一座具有独特heptagonal (七边形) 形状的惊艳建筑。
7.In geometry class, we learned how to calculate the area of a heptagonal (七边形) figure.
在几何课上,我们学习了如何计算heptagonal (七边形) 图形的面积。
作文
In the world of geometry, shapes play a crucial role in understanding the properties of space and form. One such shape that often piques the interest of both students and enthusiasts alike is the heptagonal (七边形) figure. A heptagonal shape is defined as a polygon with seven sides and seven angles, and it presents a fascinating study due to its unique characteristics and applications. To better understand the heptagonal structure, let's explore its properties. Each internal angle of a regular heptagonal polygon measures approximately 128.57 degrees. This means that if you were to draw a perfect heptagonal shape, each corner would be quite sharp, contributing to the overall aesthetic appeal of the figure. The sum of all internal angles in any polygon can be calculated using the formula (n-2) × 180, where n is the number of sides. For a heptagonal shape, this gives us a total of 900 degrees, which can be divided equally among the seven angles in a regular heptagonal. The heptagonal shape is not just an abstract concept; it has practical applications in various fields. In architecture, for example, some modern buildings incorporate heptagonal designs to create visually striking facades. These buildings stand out in urban environments, showcasing the versatility of geometric shapes in contemporary design. Furthermore, heptagonal patterns can also be found in nature, such as in certain types of flowers and fruits, highlighting the interconnectedness of geometry and the natural world. Mathematically, the study of heptagonal numbers—numbers that can form a heptagonal shape—is another intriguing aspect. The nth heptagonal number can be calculated using the formula n(5n-3)/2. This sequence starts with 1, 7, 19, 37, and continues, revealing a pattern that mathematicians find captivating. Such explorations into heptagonal numbers deepen our understanding of numerical relationships and the beauty of mathematics. Moreover, the heptagonal shape has cultural significance in various societies. In some cultures, the number seven is considered lucky or sacred, which may contribute to the use of heptagonal motifs in art and symbolism. This cultural lens adds another layer of appreciation for the heptagonal figure, as it transcends mere geometry and enters the realm of human expression and belief. In conclusion, the heptagonal (七边形) shape is more than just a polygon with seven sides; it embodies a rich tapestry of mathematical concepts, architectural beauty, and cultural significance. By studying heptagonal figures, we gain insight not only into geometry but also into the broader connections between mathematics, nature, and society. As we continue to explore the world around us, let us appreciate the elegance of shapes like the heptagonal, which remind us of the intricate patterns that exist in both the physical and abstract realms.
在几何学的世界里,形状在理解空间和形式的属性方面扮演着至关重要的角色。其中一个常常引起学生和爱好者兴趣的形状就是heptagonal(七边形)图形。heptagonal形状被定义为具有七条边和七个角的多边形,由于其独特的特性和应用,它呈现出一个迷人的研究课题。为了更好地理解heptagonal结构,让我们探讨它的属性。每个规则的heptagonal多边形的内角大约为128.57度。这意味着如果你画出一个完美的heptagonal形状,每个角都会非常尖锐,增加了这个图形的整体美感。任何多边形的所有内角的总和可以使用公式(n-2) × 180来计算,其中n是边的数量。对于heptagonal形状,这给我们提供了900度的总和,可以在一个规则的heptagonal中均匀分配给七个角。heptagonal形状不仅仅是一个抽象概念;它在各个领域都有实际应用。例如,在建筑中,一些现代建筑采用heptagonal设计来创造视觉上引人注目的外观。这些建筑在城市环境中脱颖而出,展示了几何形状在当代设计中的多样性。此外,heptagonal图案也可以在自然界中找到,比如某些类型的花和水果,突显了几何与自然界之间的相互联系。在数学上,研究heptagonal数——可以形成heptagonal形状的数字——是另一个引人入胜的方面。第n个heptagonal数可以使用公式n(5n-3)/2来计算。这个序列从1、7、19、37开始,并继续下去,揭示了一个数学家们觉得迷人的模式。这种对heptagonal数的探索加深了我们对数字关系和数学之美的理解。此外,heptagonal形状在各种社会中具有文化意义。在一些文化中,数字七被认为是幸运或神圣的,这可能促成了heptagonal图案在艺术和象征中的使用。这种文化视角为heptagonal图形增添了另一层欣赏,因为它超越了单纯的几何学,进入了人类表达和信仰的领域。总之,heptagonal(七边形)形状不仅仅是一个具有七条边的多边形;它体现了数学概念、建筑美和文化意义的丰富图景。通过研究heptagonal图形,我们不仅深入了解几何学,还了解到数学、自然和社会之间的广泛联系。当我们继续探索周围的世界时,让我们欣赏像heptagonal这样的形状,它提醒我们在物质和抽象领域中存在的复杂模式。