pyroelectricity

简明释义

[paɪrəʊɪlekˈtrɪs][ˈpɪəroɪlekˈtrɪsɪti]

n. 热电;[物] 热电性;热电现象;热电学

英英释义

Pyroelectricity is the electrical charge that accumulates in certain materials, typically crystals, when they are heated or cooled.

热电效应是指某些材料(通常是晶体)在加热或冷却时积累的电荷。

单词用法

pyroelectric materials

热电材料

pyroelectric effect

热电效应

pyroelectric sensor

热电传感器

pyroelectric generator

热电发电机

exhibit pyroelectricity

表现出热电性

generate pyroelectricity

产生热电性

measure pyroelectricity

测量热电性

utilize pyroelectricity

利用热电性

同义词

thermoelectricity

热电

Thermoelectricity is the direct conversion of temperature differences into electric voltage.

热电是温差直接转化为电压的过程。

electrothermal effect

电热效应

The electrothermal effect can be observed in certain materials when they are heated.

在某些材料加热时,可以观察到电热效应。

反义词

thermoelectricity

热电效应

Thermoelectricity is used in devices that convert heat directly into electricity.

热电效应被用于将热量直接转换为电能的设备中。

electrostatics

静电学

Electrostatics describes the forces and interactions between charged particles.

静电学描述了带电粒子之间的力和相互作用。

例句

1.The pyroelectricity characteristics of pyrite can be used as the indicators for prospecting of gold deposit.

黄铁矿的热电性特征可作为金矿的找矿标志。

2.Measurements of pyroelectricity of pyrite demonstrate that the mineralizing temperature of the gold deposit is low-moderate.

黄铁矿热电系数的测定表明本区金矿床为中低温矿床;

3.These phenomenons may root in the electrical catalysis induced by pyroelectricity .

这些现象可能与热释电效应引起的电催化作用相关。

4.The carrier exhibits its good resistance to thermal shock and remarkable pyroelectricity.

该载体材料具有良好的抗热振性能,并表现出明显的热释电效应。

5.Measurements of pyroelectricity of pyrite demonstrate that the mineralizing temperature of the gold deposit is low-moderate.

黄铁矿热电系数的测定表明本区金矿床为中低温矿床;

6.Devices that convert thermal energy into electrical energy often rely on the principles of pyroelectricity.

将热能转换为电能的设备通常依赖于热电效应的原理。

7.The phenomenon of pyroelectricity is utilized in infrared sensors to detect heat emitted by objects.

热电效应被用于红外传感器,以探测物体发出的热量。

8.In certain crystals, pyroelectricity can be generated when the temperature changes rapidly.

在某些晶体中,当温度迅速变化时,可以产生热电效应。

9.The pyroelectricity effect is particularly useful in military applications for detecting heat signatures.

热电效应在军事应用中尤其有用,用于探测热信号。

10.Researchers are exploring new materials that exhibit pyroelectricity for energy harvesting applications.

研究人员正在探索新材料,这些材料在能量收集应用中表现出热电效应。

作文

Pyroelectricity is a fascinating phenomenon that occurs in certain materials when they are subjected to changes in temperature. This property allows these materials to generate an electric charge in response to thermal fluctuations. The term 'pyroelectricity' comes from the Greek words 'pur,' meaning fire, and 'electric,' referring to the generation of electricity. Understanding this concept can lead to various applications in technology, particularly in sensors and energy harvesting devices.The fundamental principle behind pyroelectricity lies in the arrangement of atoms within a crystal lattice. When the temperature of a pyroelectric material changes, the symmetry of the crystal lattice is disrupted, resulting in a shift of the electric dipole moments. This shift generates an electric field and, consequently, an electric charge on the surface of the material. Common examples of pyroelectric materials include tourmaline, quartz, and certain ceramics.One of the most interesting applications of pyroelectricity is in infrared sensors. These sensors are widely used in various devices, such as motion detectors and thermal imaging cameras. When an object with a different temperature than the surrounding environment passes in front of the sensor, it causes a change in temperature, leading to a change in the electric charge generated by the pyroelectric material. This change can be detected and translated into an electronic signal, allowing the device to identify the presence of heat-emitting objects.Another significant application of pyroelectricity is in energy harvesting. Researchers are exploring ways to harness the energy generated by temperature fluctuations in everyday environments. For instance, if a pyroelectric device is placed in a location where it experiences regular temperature changes, such as near heating vents or in sunlight, it can convert this thermal energy into electrical energy. This concept holds great promise for powering small electronic devices, reducing our reliance on batteries and contributing to sustainable energy solutions.Moreover, pyroelectricity also plays a critical role in scientific research. In fields such as geology and material science, understanding the properties of pyroelectric materials can help scientists develop new technologies and improve existing ones. For example, studying the pyroelectric effect can lead to advancements in the development of more sensitive sensors and better-performing materials for specific applications.In conclusion, pyroelectricity is a remarkable phenomenon that has significant implications for technology and research. Its ability to generate electric charges from temperature changes opens up a world of possibilities in sensor technology, energy harvesting, and scientific exploration. As we continue to investigate and understand the principles behind pyroelectricity, we may unlock new innovations that can enhance our daily lives and contribute to a more sustainable future. The potential of this unique property is vast, and its applications are only beginning to be fully realized in the modern technological landscape.

热电效应是一个迷人的现象,它发生在某些材料在温度变化时。这种属性使这些材料能够对热波动产生电荷。术语“热电效应”源自希腊词“pur”,意思是火,以及“electric”,指的是电的产生。理解这个概念可以导致技术中各种应用,特别是在传感器和能量收集设备中。热电效应的基本原理在于晶格中原子的排列。当热电材料的温度变化时,晶格的对称性被破坏,导致电偶极矩的位移。这种位移会产生电场,从而在材料的表面上产生电荷。常见的热电材料包括电气石、石英和某些陶瓷。热电效应最有趣的应用之一是在红外传感器中。这些传感器广泛用于各种设备,如运动探测器和热成像相机。当与周围环境温度不同的物体经过传感器时,会导致温度的变化,从而导致热电材料产生的电荷的变化。这个变化可以被检测并转化为电子信号,使设备能够识别发热物体的存在。另一个重要的热电效应应用是能量收集。研究人员正在探索如何利用日常环境中的温度波动所产生的能量。例如,如果将一个热电设备放置在温度变化规律的地方,如靠近供暖通风口或阳光下,它可以将这种热能转换为电能。这个概念对为小型电子设备供电具有巨大潜力,减少我们对电池的依赖,并为可持续能源解决方案做出贡献。此外,热电效应在科学研究中也发挥着关键作用。在地质学和材料科学等领域,理解热电材料的性质可以帮助科学家开发新技术并改进现有技术。例如,研究热电效应可以推动更灵敏的传感器和特定应用的更高性能材料的发展。总之,热电效应是一个显著的现象,对技术和研究具有重大影响。它从温度变化中产生电荷的能力为传感器技术、能量收集和科学探索打开了可能性。随着我们继续调查和理解热电效应背后的原理,我们可能会解锁新的创新,这些创新可以提升我们的日常生活并为更可持续的未来做出贡献。这种独特属性的潜力是巨大的,其应用在现代技术领域中才刚刚开始被充分认识。