noncoplanar

简明释义

[ˌnɒnkəʊˈpleɪnə(r)][ˌnɑːnkoʊˈpleɪnər]

非共面的

英英释义

Not lying in the same plane; referring to points or lines that do not share a common flat surface.

不在同一平面上的;指不共享一个公共平面的点或线。

单词用法

set of noncoplanar points

一组非共面的点

noncoplanar geometric figures

非共面的几何图形

noncoplanar spatial arrangement

非共面的空间排列

noncoplanar configuration

非共面配置

noncoplanar structure

非共面结构

noncoplanar conditions

非共面条件

同义词

noncollinear

不共线的

The points A, B, and C are noncollinear, meaning they do not lie on the same line.

点A、B和C是不共线的,这意味着它们不在同一条线上。

spatially separated

空间分离的

In three-dimensional geometry, noncoplanar points cannot be contained within a single plane.

在三维几何中,非共面点无法被包含在同一个平面内。

not coplanar

非共面的

The spatially separated objects in the room create a dynamic visual effect.

房间内空间分离的物体创造了动态的视觉效果。

反义词

coplanar

共面的

The three points A, B, and C are coplanar if they lie on the same plane.

如果三点A、B和C在同一平面上,则它们是共面的。

例句

1.A mathematic model for calculating the ellipticity of the output beams in slightly noncoplanar resonators is given. By analyzing the error in the patent registed by r.

建立了计算轻微非共面腔输出光椭圆度的数学模型,分析了R。

2.A mathematic model for calculating the ellipticity of the output beams in slightly noncoplanar resonators is given. By analyzing the error in the patent registed by r.

建立了计算轻微非共面腔输出光椭圆度的数学模型,分析了R。

3.In geometry, two lines that do not lie on the same plane are considered noncoplanar 不共面的.

在几何学中,两个不在同一平面上的线被称为noncoplanar 不共面的

4.In 3D modeling, ensuring that certain points are noncoplanar 不共面的 can help achieve realistic depth.

在3D建模中,确保某些点是noncoplanar 不共面的可以帮助实现逼真的深度效果。

5.When analyzing forces in physics, noncoplanar 不共面的 forces can lead to more complex interactions.

在物理学中,分析力时,noncoplanar 不共面的力会导致更复杂的相互作用。

6.The architect designed a structure with noncoplanar 不共面的 elements to create a unique visual effect.

建筑师设计了一座具有noncoplanar 不共面的元素的结构,以创造独特的视觉效果。

7.The engineer explained that the beams were noncoplanar 不共面的, which required special support during construction.

工程师解释说,这些梁是noncoplanar 不共面的,这在施工过程中需要特殊支撑。

作文

In the study of geometry and spatial relationships, the concept of points, lines, and planes is fundamental. When we consider the arrangement of points in space, we often encounter the term noncoplanar, which refers to points that do not lie on the same geometric plane. Understanding this concept is crucial for various applications in mathematics, physics, and engineering.To illustrate the idea of noncoplanar points, imagine three points A, B, and C that form a triangle on a flat surface, such as a piece of paper. These points are coplanar because they all reside on the same plane. However, if we introduce a fourth point D that is positioned above or below this plane, then A, B, C, and D become noncoplanar. This means that no single flat surface can contain all four points simultaneously.The significance of noncoplanar points extends beyond theoretical geometry. In engineering, for example, when designing structures, engineers must consider the stability and strength of materials. If the supports of a structure are noncoplanar, it can lead to uneven weight distribution, potentially causing structural failure. Therefore, understanding the relationships between different points and whether they are coplanar or noncoplanar is essential in ensuring safety and durability in construction projects.In physics, the concept of noncoplanar forces plays a critical role in understanding how objects interact with one another. When multiple forces act on an object, if these forces are noncoplanar, it complicates the analysis of motion and equilibrium. For instance, if a box is pushed from two different angles that do not lie on the same plane, the resultant force will need to be calculated using vector addition, taking into account the three-dimensional nature of the situation. This complexity arises precisely because the forces are noncoplanar.Moreover, in computer graphics and 3D modeling, the understanding of noncoplanar surfaces is vital for rendering realistic images. When creating 3D models, designers must ensure that certain vertices are placed correctly in relation to others to avoid visual artifacts. If some points are noncoplanar, it can lead to issues such as clipping or distortion in the final render. Thus, mastering the concept of noncoplanar arrangements allows artists and developers to create more accurate and visually appealing representations of objects.In conclusion, the term noncoplanar encompasses a significant aspect of geometry that has practical implications in various fields. Whether in engineering, physics, or computer graphics, recognizing the difference between coplanar and noncoplanar points is essential for effective problem-solving and design. As we continue to explore the complexities of spatial relationships, the understanding of noncoplanar configurations will remain a key component in our comprehension of the world around us.

在几何和空间关系的研究中,点、线和平面的概念是基础。当我们考虑空间中点的排列时,常常会遇到术语非共面的,它指的是不在同一个几何平面上的点。理解这一概念对于数学、物理和工程等各种应用至关重要。为了说明非共面点的概念,想象一下三个点A、B和C,它们在平面上形成一个三角形,比如一张纸。这些点是共面的,因为它们都位于同一个平面上。然而,如果我们引入一个第四个点D,该点位于这个平面之上或之下,那么A、B、C和D就成为非共面。这意味着没有一个平面可以同时包含这四个点。非共面点的重要性不仅限于理论几何。在工程学中,例如,在设计结构时,工程师必须考虑材料的稳定性和强度。如果结构的支撑是非共面的,可能会导致不均匀的重量分布,从而导致结构失败。因此,理解不同点之间的关系以及它们是否是共面或非共面的,对于确保建筑项目的安全性和耐用性至关重要。在物理学中,非共面力的概念在理解物体之间的相互作用中起着关键作用。当多个力作用于一个物体时,如果这些力是非共面的,那么分析运动和静力平衡就会变得复杂。例如,如果一个箱子从两个不同的角度施加推力,而这些角度不在同一个平面上,那么需要使用向量相加来计算合力,考虑到情况的三维特性。这种复杂性正是因为力是非共面的。此外,在计算机图形学和3D建模中,理解非共面表面对渲染逼真图像至关重要。在创建3D模型时,设计师必须确保某些顶点相对于其他顶点正确放置,以避免视觉伪影。如果某些点是非共面的,可能会导致最终渲染中的剪切或失真问题。因此,掌握非共面排列的概念使艺术家和开发者能够创建更准确和视觉上更吸引人的物体表示。总之,术语非共面涵盖了几何学的一个重要方面,这在各个领域都有实际意义。无论是在工程、物理还是计算机图形学中,认识到共面和非共面点之间的区别对于有效的问题解决和设计至关重要。随着我们继续探索空间关系的复杂性,对非共面配置的理解将始终是我们理解周围世界的关键组成部分。