isocost function

简明释义

等成本函数

英英释义

An isocost function represents all combinations of inputs that can be purchased for a given total cost, typically used in production theory to analyze the relationship between input prices and output levels.

等成本函数表示在给定总成本下可以购买的所有输入组合,通常用于生产理论中分析输入价格与产出水平之间的关系。

例句

1.When constructing the budget, the accountant referred to the isocost function 等成本线 to plan expenditures.

在制定预算时,会计参考了isocost function 等成本线来规划支出。

2.By analyzing the isocost function 等成本线, the manager was able to minimize costs while maximizing output.

通过分析isocost function 等成本线,经理能够在最大化产出的同时最小化成本。

3.Understanding the isocost function 等成本线 helps businesses allocate resources more effectively.

理解isocost function 等成本线有助于企业更有效地分配资源。

4.The intersection of the isocost function 等成本线 and the isoprofit curve indicates the most efficient production point.

isocost function 等成本线与等利润曲线的交点表示最有效的生产点。

5.The firm plotted its isocost function 等成本线 to determine the optimal combination of labor and capital.

该公司绘制了其isocost function 等成本线以确定劳动和资本的最佳组合。

作文

In the realm of economics, understanding various concepts is crucial for analyzing market behaviors and production efficiencies. One such concept is the isocost function, which plays a significant role in production theory. The isocost function represents all the combinations of inputs that can be purchased for a given total cost. It is similar to the budget constraint in consumer theory, where consumers allocate their budget across different goods. For businesses, the isocost function helps them determine how to allocate their resources efficiently to maximize output while minimizing costs.To better understand the isocost function, let us consider a simple example involving two inputs: labor and capital. Suppose a firm has a budget of $100 to spend on these two inputs. The prices for labor and capital are $10 per unit and $20 per unit, respectively. The equation for the isocost function can be established as follows:C = wL + rK,where C is the total cost, w is the price of labor, L is the quantity of labor, r is the price of capital, and K is the quantity of capital. In our case, this translates into:100 = 10L + 20K.This equation can be rearranged to illustrate the trade-offs between labor and capital. When we solve for K, we find:K = (100 - 10L) / 20.This equation demonstrates how many units of capital the firm can afford for different levels of labor input. By plotting this equation on a graph, we can visualize the isocost function as a straight line with a negative slope. The slope of this line indicates the rate at which one input can be substituted for another while keeping the total cost constant.The isocost function is particularly useful when combined with the isoquant curve, which represents different combinations of inputs that yield the same level of output. By analyzing the point where the isocost function is tangent to the isoquant curve, firms can identify the optimal combination of labor and capital that minimizes costs while achieving desired output levels.Moreover, shifts in the isocost function can occur due to changes in total budget or input prices. For instance, if the firm's budget increases to $200, the isocost function will shift outward, allowing for greater combinations of labor and capital. Conversely, if the price of labor were to rise significantly, the isocost function would pivot inward, indicating that the firm can afford less labor for the same budget.In conclusion, the isocost function is an essential tool in production theory that aids firms in resource allocation decisions. By understanding the isocost function, businesses can strategically plan their production processes to achieve maximum efficiency and profitability. As firms navigate through varying costs and budgets, the isocost function remains a fundamental concept that underscores the importance of cost management in economic decision-making.

在经济学领域,理解各种概念对于分析市场行为和生产效率至关重要。其中一个重要概念是等成本函数,它在生产理论中发挥着重要作用。等成本函数表示可以用给定总成本购买的所有输入组合。它类似于消费者理论中的预算约束,消费者在不同商品之间分配他们的预算。对于企业来说,等成本函数帮助它们确定如何有效分配资源,以最大化产出,同时最小化成本。为了更好地理解等成本函数,让我们考虑一个涉及两个输入的简单例子:劳动和资本。假设一家公司有100美元的预算来花费在这两种输入上。劳动和资本的价格分别为每单位10美元和20美元。等成本函数的方程可以建立如下:C = wL + rK,其中C是总成本,w是劳动的价格,L是劳动的数量,r是资本的价格,K是资本的数量。在我们的例子中,这可以转化为:100 = 10L + 20K。这个方程可以重排,以说明劳动和资本之间的权衡。当我们解出K时,我们发现:K = (100 - 10L) / 20。这个方程展示了公司在不同劳动投入水平下能够负担的资本单位数。通过在图表上绘制这个方程,我们可以将等成本函数可视化为一条具有负斜率的直线。这条线的斜率表明,在保持总成本不变的情况下,一个输入可以以多快的速度替代另一个输入。等成本函数在与等产量曲线结合使用时特别有用,后者表示产生相同输出水平的不同输入组合。通过分析等成本函数等产量曲线相切的点,公司可以识别出最优的劳动和资本组合,从而在达到预期产出水平的同时最小化成本。此外,由于总预算或输入价格的变化,等成本函数可能会发生移动。例如,如果公司的预算增加到200美元,等成本函数将向外移动,允许更多的劳动和资本组合。相反,如果劳动的价格显著上升,等成本函数将向内旋转,表明公司在相同预算下能够负担的劳动减少。总之,等成本函数是生产理论中一种基本工具,帮助公司在资源分配决策中做出明智选择。通过理解等成本函数,企业可以战略性地规划其生产过程,以实现最大效率和盈利能力。随着企业在不断变化的成本和预算中导航,等成本函数仍然是强调成本管理在经济决策中重要性的基本概念。