exclusion principle

简明释义

除外原则

英英释义

A fundamental principle in quantum mechanics stating that no two identical fermions can occupy the same quantum state simultaneously.

量子力学中的一个基本原则,指出没有两个相同的费米子可以同时占据相同的量子态。

In a broader context, it refers to the idea that certain entities cannot coexist in the same state or condition.

在更广泛的背景下,它指的是某些实体不能在相同状态或条件下共存的观点。

例句

1.The exclusion principle states that no two electrons can occupy the same quantum state simultaneously.

排斥原理指出,两个电子不能同时占据相同的量子态。

2.The exclusion principle is crucial for understanding the behavior of fermions in quantum mechanics.

排斥原理对于理解量子力学中费米子的行为至关重要。

3.The exclusion principle explains why certain elements have unique chemical properties.

排斥原理解释了为什么某些元素具有独特的化学性质。

4.According to the exclusion principle, only one particle can occupy a specific state in a quantum system.

根据排斥原理,在量子系统中,只有一个粒子可以占据特定的状态。

5.In chemistry, the exclusion principle helps explain the arrangement of electrons in an atom.

在化学中,排斥原理有助于解释原子中电子的排列。

作文

The concept of the exclusion principle is fundamental in the field of quantum mechanics. It refers to a principle that states that no two identical fermions can occupy the same quantum state simultaneously. This principle was first formulated by the physicist Wolfgang Pauli in 1925 and has profound implications in various areas of physics and chemistry. Understanding the exclusion principle is crucial for grasping the behavior of electrons in atoms, which ultimately determines the structure of the periodic table and the nature of chemical bonds.In essence, the exclusion principle explains why matter has a stable structure. For instance, if we consider an atom, it consists of a nucleus surrounded by electrons. According to the exclusion principle, each electron must occupy a unique quantum state, which means that they cannot be in the same place at the same time with the same energy level. This leads to the arrangement of electrons in different shells and subshells around the nucleus, giving rise to the diverse chemical properties of elements.Moreover, the exclusion principle is not just limited to electrons; it applies to all fermions, which are particles that follow Fermi-Dirac statistics. These include protons and neutrons, the building blocks of atomic nuclei. The stability of atomic nuclei is also a consequence of the exclusion principle, as it governs how protons and neutrons are arranged within the nucleus. Without this principle, atoms would not exist in their current forms, and the universe would be vastly different.The implications of the exclusion principle extend beyond atomic structure. In solid-state physics, it plays a crucial role in determining the electrical and thermal properties of materials. For example, the conductivity of metals can be explained through the behavior of electrons under the exclusion principle. In superconductors, the exclusion principle allows for the formation of Cooper pairs, which leads to zero electrical resistance at low temperatures.Furthermore, the exclusion principle has applications in modern technology. Quantum computing, for instance, relies on the principles of quantum mechanics, including the exclusion principle. Quantum bits, or qubits, can exist in multiple states simultaneously, but the exclusion principle ensures that certain configurations are not possible, allowing for complex computations that classical computers cannot achieve.In summary, the exclusion principle is a cornerstone of quantum mechanics that explains the behavior of fermions and the structure of matter. Its significance spans across various scientific disciplines, influencing everything from the arrangement of atoms to the development of new technologies. By understanding the exclusion principle, we gain insight into the fundamental workings of the universe and the interactions that govern the behavior of matter at the smallest scales.In conclusion, the exclusion principle is not just a theoretical concept; it is a principle that underlines the very fabric of our physical reality. Its discovery has opened doors to countless advancements in science and technology, making it one of the most important principles in modern physics.

排斥原理是量子力学领域的一个基本概念。它指的是一个原则,表明没有两个相同的费米子能够同时占据相同的量子态。这个原则最早由物理学家沃尔夫冈·泡利于1925年提出,并在物理和化学的多个领域具有深远的影响。理解排斥原理对于掌握原子中电子的行为至关重要,这最终决定了元素周期表的结构和化学键的性质。从本质上讲,排斥原理解释了物质为何具有稳定的结构。例如,如果我们考虑一个原子,它由一个核和围绕其旋转的电子组成。根据排斥原理,每个电子必须占据一个独特的量子态,这意味着它们不能同时处于同一位置并具有相同的能量水平。这导致电子在核周围以不同的壳层和亚壳层排列,从而产生元素的多样化化学性质。此外,排斥原理不仅限于电子;它适用于所有费米子,即遵循费米-狄拉克统计的粒子。这些粒子包括质子和中子,原子核的构建块。原子核的稳定性也是排斥原理的结果,因为它支配着质子和中子在核内的排列。如果没有这个原则,原子将不会以当前的形式存在,宇宙将会大为不同。排斥原理的影响超越了原子结构。在固态物理中,它在决定材料的电气和热性能方面发挥着关键作用。例如,金属的导电性可以通过电子在排斥原理下的行为来解释。在超导体中,排斥原理允许库珀对的形成,从而在低温下导致零电阻。此外,排斥原理在现代技术中也有应用。量子计算依赖于量子力学的原理,包括排斥原理。量子位或量子比特可以同时存在于多个状态,但排斥原理确保某些配置是不可能的,从而允许进行经典计算机无法实现的复杂计算。总之,排斥原理是量子力学的基石,解释了费米子的行为和物质的结构。它的重要性跨越了多个科学学科,影响着从原子的排列到新技术的发展。通过理解排斥原理,我们获得了对宇宙基本运作和支配物质在最小尺度下行为的相互作用的洞察。最后,排斥原理不仅仅是一个理论概念;它是一个支撑我们物理现实的原则。它的发现为科学和技术的无数进步打开了大门,使其成为现代物理学中最重要的原则之一。

相关单词

exclusion

exclusion详解:怎么读、什么意思、用法