parametric variation
简明释义
参量变化
英英释义
Parametric variation refers to the changes in a system or model that occur as a result of altering its parameters or variables. | 参数变化是指由于改变系统或模型的参数或变量而导致的变化。 |
例句
1.Understanding parametric variation 参数变化 is crucial for optimizing design processes.
理解参数变化对于优化设计过程至关重要。
2.In statistics, parametric variation 参数变化 can influence the validity of the results.
在统计学中,参数变化可能会影响结果的有效性。
3.Engineers must account for parametric variation 参数变化 when simulating product performance.
工程师在模拟产品性能时必须考虑参数变化。
4.The software allows users to manipulate parametric variation 参数变化 to see different outcomes.
该软件允许用户操控参数变化以查看不同的结果。
5.The study focused on the effects of parametric variation 参数变化 in climate models.
这项研究集中在气候模型中参数变化的影响。
作文
In the field of mathematics and engineering, the term parametric variation refers to the changes in the parameters of a given model or system that can significantly affect its behavior and outcomes. Understanding this concept is crucial for anyone involved in modeling complex systems, as it allows for better predictions and optimizations. For instance, when designing a bridge, engineers must consider various parameters such as material strength, load capacity, and environmental factors. Each of these parameters can be varied, and the effects of these variations must be analyzed to ensure the safety and efficiency of the structure. This is where parametric variation plays a vital role.The importance of parametric variation extends beyond engineering; it is also significant in fields like economics, biology, and computer science. In economics, for example, models often depend on parameters such as interest rates, inflation, and consumer behavior. By understanding how changes in these parameters influence economic outcomes, policymakers can make more informed decisions. Similarly, in biology, researchers might study how variations in environmental conditions—such as temperature or humidity—affect the growth rates of different species. The ability to manipulate and understand parametric variation in these contexts leads to more accurate models and better decision-making.Moreover, in computer science, particularly in algorithm design, parametric variation is essential for optimizing performance. Algorithms often have parameters that can be adjusted to improve their efficiency. For instance, in machine learning, the choice of hyperparameters can greatly influence the performance of a model. By systematically varying these parameters and observing the outcomes, data scientists can fine-tune their models for better accuracy. This process of exploring parametric variation is fundamental to achieving optimal results in computational tasks.The concept of parametric variation is not limited to theoretical applications; it also has practical implications in real-world scenarios. Take the automotive industry, for example. Engineers regularly conduct tests on vehicles by varying parameters such as tire pressure, weight distribution, and engine performance. These tests help in understanding how each parameter affects the overall performance of the vehicle, leading to improvements in safety and efficiency. The iterative process of testing and refining based on parametric variation is essential for innovation in this sector.In conclusion, the concept of parametric variation is integral to various disciplines, from engineering to economics, biology, and computer science. It provides a framework for understanding how changes in parameters can lead to different outcomes. By embracing parametric variation, professionals can enhance their models, optimize performance, and make informed decisions that drive progress and innovation. As we continue to navigate complex systems and challenges, the significance of understanding and applying parametric variation will only grow, making it an essential skill for future generations of thinkers and problem-solvers.
在数学和工程领域,术语参数变化指的是给定模型或系统中参数的变化,这些变化可能会显著影响其行为和结果。理解这个概念对于任何参与复杂系统建模的人来说都是至关重要的,因为它可以更好地进行预测和优化。例如,在设计桥梁时,工程师必须考虑各种参数,如材料强度、载荷能力和环境因素。每个参数都可以变化,这些变化的影响必须得到分析,以确保结构的安全性和效率。这就是参数变化发挥重要作用的地方。参数变化的重要性不仅限于工程;在经济学、生物学和计算机科学等领域也同样重要。例如,在经济学中,模型通常依赖于利率、通货膨胀和消费者行为等参数。通过理解这些参数的变化如何影响经济结果,政策制定者可以做出更明智的决策。同样,在生物学中,研究人员可能会研究环境条件(如温度或湿度)的变化如何影响不同物种的生长速度。在这些背景下操纵和理解参数变化的能力导致了更准确的模型和更好的决策。此外,在计算机科学,特别是在算法设计中,参数变化对于优化性能至关重要。算法通常有可以调整的参数,以提高其效率。例如,在机器学习中,超参数的选择可以极大地影响模型的性能。通过系统地变化这些参数并观察结果,数据科学家可以微调他们的模型以获得更好的准确性。这种探索参数变化的过程是实现计算任务最佳结果的基础。参数变化的概念不仅限于理论应用;它在现实场景中也具有实际意义。以汽车工业为例,工程师定期通过改变轮胎压力、重量分布和发动机性能等参数来对车辆进行测试。这些测试有助于了解每个参数如何影响车辆的整体性能,从而导致安全性和效率的改善。基于参数变化的测试和改进的迭代过程对于该行业的创新至关重要。总之,参数变化的概念在工程、经济学、生物学和计算机科学等各个学科中都是不可或缺的。它提供了一个框架,用于理解参数变化如何导致不同的结果。通过接受参数变化,专业人士可以增强他们的模型,优化性能,并做出推动进步和创新的明智决策。随着我们继续应对复杂的系统和挑战,理解和应用参数变化的重要性只会增加,使其成为未来一代思想家和问题解决者必备的技能。
相关单词