triaxiality
简明释义
英[traɪˌæksɪˈæləti]美[traɪæksɪˈælɪti]
n. 三轴;三维
英英释义
单词用法
高三轴性 | |
低三轴性 | |
三轴比率 | |
增加三轴性 | |
测量三轴性 | |
应力的三轴性 |
同义词
反义词
例句
1.The results show that for a set of moduli and the interphase thickness there exists a critical value of the stress triaxiality.
结果表明,对给定的模量和界面相厚度值,存在一个临界应力三轴度值。
2.A plastic constitutive damage model was proposed with special concerns being put on simulating the stress triaxiality-dependent hardening phenomena.
提出了一种新的损伤塑性本构模型,强调了应力三轴比对塑性屈服的影响。
3.The transformation between the two models depends on the stress triaxiality in the region where failure takes place.
决定这两种断裂模式的转变的是应力三轴度。
4.The theoretical and experimental results show that the Damage variable is linear with equivalent strain and it is affected remarkably by the triaxiality stress ratio.
理论分析与实验结果表明,损伤变量与相当应变呈线性关系,并且其值受应力三轴变的显著影响。
5.The specimens of 6063 aluminum alloy are tensioned under different stress triaxiality and different strain rates, the mechanical properties of 6063 aluminum alloy can be drawn.
对6063铝合金试样在不同应力三轴度和不同应变率下进行拉伸试验,得到了该合金在这两种情况下的力学性能。
6.Also, the extrapolation method is used to obtain the SIF and stress triaxiality around the tip cracks.
应用外推法得到应力强度因子及裂尖周围的应力三维度。
7.The stress triaxiality and equivalent plastic strain distributions at the minimum cross-section of specimens with different notch root radius are similar for such three kinds of materials.
三种材料不同缺口根半径试样最小横截面上应力三维度和等效塑性应变分布形态相似。
8.In geotechnical engineering, triaxiality plays a significant role in soil strength testing.
在岩土工程中,三轴性在土壤强度测试中起着重要作用。
9.The concept of triaxiality is crucial in understanding the mechanical behavior of materials under complex loading conditions.
理解材料在复杂加载条件下的机械行为时,三轴性的概念至关重要。
10.The triaxiality parameter helps engineers design safer structures by understanding stress distribution.
通过理解应力分布,三轴性参数帮助工程师设计更安全的结构。
11.Researchers often study the effects of triaxiality on fracture mechanics to predict failure modes.
研究人员常常研究三轴性对断裂力学的影响,以预测失效模式。
12.High levels of triaxiality can lead to ductile failure in metals at elevated temperatures.
高水平的三轴性可能导致金属在高温下发生延展性失效。
作文
In the field of material science and engineering, the concept of triaxiality plays a crucial role in understanding how materials behave under different loading conditions. Triaxiality refers to the state of stress in which three principal stresses are acting on a material simultaneously. This condition is particularly relevant when analyzing the strength and ductility of materials, especially metals and polymers, under complex loading scenarios.To comprehend triaxiality, one must first grasp the basics of stress states. In a uniaxial stress state, only one principal stress is applied, leading to simple tension or compression. However, as we introduce additional stresses in different directions, the material experiences a more complicated interaction among these forces. Triaxiality occurs when these three stresses are non-zero, creating a multi-axial stress environment that significantly influences the material's failure mechanisms.The importance of triaxiality cannot be overstated in the context of engineering applications. For instance, in the design of structural components that may be subjected to multi-axial loading, understanding the triaxiality of stress becomes vital for predicting potential failure points. Engineers often use triaxial tests to evaluate how materials respond under such conditions. These tests allow for the measurement of yield strength and ductility, providing essential data for safe and effective material selection in construction and manufacturing processes.Moreover, triaxiality has implications beyond mechanical properties; it also affects the microstructural changes within materials. High levels of triaxiality can lead to phenomena such as void formation or crack propagation, which are critical considerations in fatigue analysis. Understanding these effects helps researchers and engineers develop better materials and structures that can withstand harsh operational environments.In recent years, advancements in computational modeling have enhanced our ability to analyze triaxiality in materials. Finite element analysis (FEA) allows for detailed simulations of stress distribution within a material under various loading conditions. By incorporating triaxiality into these models, engineers can predict how materials will perform in real-world applications, leading to safer and more efficient designs.In conclusion, triaxiality is a fundamental concept in the study of materials that encompasses the interactions of multiple stress states. Its significance in predicting material behavior under complex loading conditions makes it an essential consideration in engineering design and research. As technology continues to evolve, our understanding of triaxiality will undoubtedly lead to innovations in material science, ultimately enhancing the performance and safety of engineered systems.
在材料科学和工程领域,三轴性的概念在理解材料在不同加载条件下的行为中起着至关重要的作用。三轴性指的是同时作用于材料上的三种主应力的应力状态。这种情况在分析金属和聚合物等材料在复杂加载场景下的强度和延展性时尤为相关。要理解三轴性,首先必须掌握应力状态的基础知识。在单轴应力状态下,只施加一种主应力,导致简单的拉伸或压缩。然而,随着我们在不同方向上引入额外的应力,材料在这些力之间会经历更复杂的相互作用。当这三种应力均不为零时,就会出现三轴性,这会显著影响材料的失效机制。在工程应用中,三轴性的重要性不容小觑。例如,在设计可能受到多轴加载的结构组件时,了解应力的三轴性对于预测潜在的失效点至关重要。工程师通常使用三轴试验来评估材料在这种条件下的反应。这些测试允许测量屈服强度和延展性,提供安全有效的材料选择所需的重要数据,用于建筑和制造过程。此外,三轴性不仅影响机械性能,还影响材料内部的微观结构变化。高水平的三轴性可能导致空洞形成或裂纹扩展,这些都是疲劳分析中的关键考虑因素。理解这些影响有助于研究人员和工程师开发出更好的材料和结构,以承受恶劣的操作环境。近年来,计算建模的进步增强了我们分析材料中三轴性的能力。有限元分析(FEA)允许对材料在各种加载条件下的应力分布进行详细模拟。通过将三轴性纳入这些模型,工程师可以预测材料在现实应用中的表现,从而导致更安全、更高效的设计。总之,三轴性是材料研究中的一个基本概念,涵盖了多种应力状态之间的相互作用。它在预测材料在复杂加载条件下的行为中的重要性使其成为工程设计和研究中的一个重要考虑因素。随着技术的不断发展,我们对三轴性的理解无疑将导致材料科学的创新,最终提高工程系统的性能和安全性。