dioptrics
简明释义
[光] 屈光学
英英释义
The branch of optics that deals with the measurement and correction of the refractive power of lenses and optical systems. | 光学的一个分支,涉及透镜和光学系统的折射力的测量和校正。 |
单词用法
透镜的光学特性 | |
光学原理 | |
光学与透镜学 | |
透镜学研究 |
同义词
反义词
例句
1.The basic concepts of matrix method are introduced and three examples of dioptrics are given.
文中论及了矩阵方法的基本概念,并通过三个实例计算,具体介绍了矩阵方法的应用。
2.The basic concepts of matrix method are introduced and three examples of dioptrics are given.
文中论及了矩阵方法的基本概念,并通过三个实例计算,具体介绍了矩阵方法的应用。
3.In dioptrics, we analyze the refraction of light through different media.
在光学中,我们分析光在不同介质中的折射。
4.The study of dioptrics is essential for understanding how lenses focus light.
学习光学对于理解透镜如何聚焦光线是至关重要的。
5.The design of corrective eyewear relies heavily on principles of dioptrics.
矫正眼镜的设计在很大程度上依赖于光学原理。
6.Understanding dioptrics helps optometrists prescribe the right lenses.
理解光学有助于验光师开处方合适的镜片。
7.The dioptrics of a telescope determines its ability to magnify distant objects.
望远镜的光学决定了其放大遥远物体的能力。
作文
The study of light and its interaction with lenses is a fascinating field known as dioptrics. This branch of optics focuses on how lenses can bend light to form images, which is essential for various applications in everyday life. From the glasses we wear to correct our vision to the cameras that capture our memories, dioptrics plays a crucial role in enhancing our perception of the world around us.To understand dioptrics, one must first grasp the basic principles of light behavior. Light travels in straight lines until it encounters an object or a medium that alters its path. When light passes through a lens, it can either converge or diverge, depending on the shape of the lens. Convex lenses, which are thicker in the center than at the edges, cause light rays to converge at a point known as the focal point. In contrast, concave lenses, which are thinner in the center, cause light rays to diverge, making them appear to originate from a focal point behind the lens.This bending of light is not just a scientific curiosity; it has practical implications in many fields. In medicine, for example, dioptrics is vital for designing corrective lenses for patients with vision impairments. Optometrists use their knowledge of dioptrics to determine the appropriate prescription for glasses or contact lenses, ensuring that patients can see clearly. Similarly, in photography, understanding dioptrics allows photographers to select the right lenses for their cameras, enabling them to capture stunning images with the desired focus and depth of field.Additionally, dioptrics is fundamental in the development of optical instruments such as microscopes and telescopes. These devices rely on complex arrangements of lenses to magnify distant or tiny objects, allowing scientists to explore the micro and macro worlds. The advancements in dioptrics have revolutionized fields like biology and astronomy, providing insights that were once beyond our reach.As technology continues to advance, the principles of dioptrics are being applied in innovative ways. For instance, virtual reality (VR) headsets utilize lenses to create immersive experiences by altering the way light reaches our eyes. Understanding dioptrics enables engineers to design these systems effectively, ensuring that users enjoy a seamless and realistic experience.In conclusion, dioptrics is a vital field of study that impacts our daily lives in numerous ways. Its principles govern the functioning of lenses used in glasses, cameras, microscopes, and more. As we continue to explore the possibilities of light manipulation, the importance of dioptrics will undoubtedly grow, leading to new discoveries and advancements that enhance our understanding of the universe. Whether through improving our vision or expanding our horizons in science, dioptrics remains a cornerstone of optical science, shaping both our present and future interactions with light.
光与透镜相互作用的研究是一个迷人的领域,称为屈光学。这个光学分支专注于透镜如何弯曲光线以形成图像,这对于日常生活中的各种应用至关重要。从我们佩戴的矫正视力的眼镜到捕捉记忆的相机,屈光学在增强我们对周围世界的感知中发挥着关键作用。要理解屈光学,首先必须掌握光行为的基本原理。光沿直线传播,直到遇到改变其路径的物体或介质。当光通过透镜时,它可以收敛或发散,具体取决于透镜的形状。凸透镜在中心比边缘厚,导致光线在一个称为焦点的点汇聚。相反,凹透镜在中心比边缘薄,导致光线发散,使它们似乎从透镜后面的一个焦点发出。这种光的弯曲不仅是科学好奇心;它在许多领域具有实际意义。例如,在医学中,屈光学对设计矫正视力的透镜至关重要。验光师利用他们对屈光学的知识来确定眼镜或隐形眼镜的合适处方,确保患者能够清晰地看到。同样,在摄影中,理解屈光学使摄影师能够选择合适的相机镜头,使他们能够以所需的焦点和景深捕捉惊人的图像。此外,屈光学在显微镜和望远镜等光学仪器的发展中是基础。这些设备依赖于复杂的透镜排列来放大远处或微小的物体,使科学家能够探索微观和宏观世界。屈光学的进步彻底改变了生物学和天文学等领域,提供了曾经超出我们触及的见解。随着技术的不断进步,屈光学原理正在以创新的方式应用。例如,虚拟现实(VR)头戴设备利用透镜创造沉浸式体验,通过改变光到达我们眼睛的方式来实现。理解屈光学使工程师能够有效地设计这些系统,确保用户享受无缝且真实的体验。总之,屈光学是一个重要的研究领域,以多种方式影响我们的日常生活。它的原理支配着用于眼镜、相机、显微镜等的透镜的功能。随着我们继续探索光操控的可能性,屈光学的重要性无疑会增加,导致新的发现和进步,增强我们对宇宙的理解。无论是通过改善我们的视力还是扩展我们在科学中的视野,屈光学仍然是光学科学的基石,塑造着我们与光的现在和未来的互动。