intramolecular
简明释义
英[ˌɪntrəməˈlekjʊlə]美[ˌɪntrəməˈlekjələr]
adj. [化学] 分子内的
英英释义
与单个分子内部相关或发生的。 |
单词用法
分子内氢键 | |
分子内相互作用 | |
分子内重排 | |
分子内能量转移 | |
分子内环化 | |
分子内质子转移 |
同义词
反义词
分子间的 | Intermolecular forces are crucial in determining the physical properties of substances. | 分子间的力在决定物质的物理性质中至关重要。 |
例句
1.Donors such as amine and phenolic groups, when positioned ortho to a nitro group, are always involved in intramolecular hydrogen bonding.
在硝基邻位上存在的氢键给体如胺基,酚基时,总与硝基形成分子内氢键。
2.The results show that the title compound is stable; the cis configuration has intramolecular hydrogen bond while trans configuration dose not.
结果表明标题化合物稳定,顺式构型分子内有氢键,反式则没有。
3.Proton transfer and Isomerization of intramolecular;
分子内部的质子转移和异构化;
4.The X-ray analysis reveals that the crystal structures of compounds 1 and 2 are two-dimensional layer structures through intramolecular hydrogen bonding and -? stacking.
射线分析显示化合物1和2的晶体结构均由分子间氢键和-弱相互作用堆积而成的二维层状结构。
5.Benzimidazolyl group exhibits catalytic activity in the way as intramolecular general-base catalysis in the hydrolysis of 3-(2'-benzimidazolyl)-3-hydroxy propionate.
在3-(2'-苯并咪唑基)-3-羟基丙酸乙酯水解过程中,苯并咪唑基以分子内一般碱催化方式参与催化酯的水解反应。
6.The new fluorescent band is considered to be related to the intramolecular charge transfer between the amino group and the quinonoid carbonyl group.
我们认为该新的荧光峰与胺基和醌羰基之间的分子内电子转移有关。
7.The intramolecular 分子内 interactions play a crucial role in determining the geometric configuration of molecules.
这些分子内相互作用在决定分子的几何构型中起着关键作用。
8.Researchers are studying intramolecular 分子内 forces to improve drug delivery systems.
研究人员正在研究分子内力以改善药物输送系统。
9.The stability of the compound is largely due to its intramolecular 分子内 hydrogen bonding.
该化合物的稳定性主要归因于其分子内氢键。
10.In organic chemistry, understanding intramolecular 分子内 reactions can lead to the synthesis of complex molecules.
在有机化学中,理解分子内反应可以导致复杂分子的合成。
11.The design of intramolecular 分子内 catalysts has revolutionized many chemical processes.
设计分子内催化剂已经彻底改变了许多化学过程。
作文
The study of chemistry often unveils the intricate workings of molecules and their interactions. One crucial concept in this field is that of intramolecular (分子内的) forces, which refer to the attractive or repulsive forces that occur within a single molecule. Understanding these forces is essential for grasping how molecules behave and react with one another. To illustrate, consider the structure of water (H2O). Each water molecule consists of two hydrogen atoms covalently bonded to one oxygen atom. The bonds formed between these atoms are examples of intramolecular (分子内的) forces. These forces determine the shape of the water molecule and significantly influence its physical and chemical properties. For instance, the angle between the hydrogen-oxygen-hydrogen atoms is approximately 104.5 degrees, a result of the intramolecular (分子内的) bonding angles. This unique geometry contributes to water's high surface tension and its ability to dissolve many substances, making it a universal solvent. In contrast to intramolecular (分子内的) forces, we also have intermolecular forces, which are the forces of attraction or repulsion between different molecules. While intramolecular (分子内的) forces are responsible for the stability and structure of individual molecules, intermolecular forces govern the interactions between multiple molecules. For example, the reason why ice floats on water is due to the hydrogen bonds, an example of intermolecular forces, which are weaker than the intramolecular (分子内的) forces holding the water molecules together. The importance of intramolecular (分子内的) forces extends beyond simple molecular structures. In biochemistry, the formation of proteins and nucleic acids like DNA relies heavily on these forces. The sequence of amino acids in a protein determines how it folds into its three-dimensional structure, which is stabilized by intramolecular (分子内的) interactions such as hydrogen bonds, ionic bonds, and hydrophobic interactions. Similarly, the double helix structure of DNA is maintained by intramolecular (分子内的) hydrogen bonds between the nucleotide bases. Moreover, the understanding of intramolecular (分子内的) forces has practical applications in various fields, including materials science and pharmacology. For instance, the development of new materials often involves manipulating intramolecular (分子内的) forces to create stronger or more flexible substances. In pharmaceuticals, the design of drugs requires a deep understanding of how intramolecular (分子内的) interactions can affect the efficacy and stability of a medication. In conclusion, the concept of intramolecular (分子内的) forces is fundamental to our understanding of chemistry and biology. By studying these forces, scientists can gain insights into the behavior of molecules, the formation of complex structures, and the interactions that govern life itself. As research continues to advance, the knowledge of intramolecular (分子内的) forces will undoubtedly play a pivotal role in future scientific discoveries and innovations.
化学研究常常揭示分子及其相互作用的复杂运作。其中一个关键概念是intramolecular(分子内的)力,指的是在单个分子内部发生的吸引或排斥力。理解这些力对于掌握分子的行为和反应至关重要。例如,考虑水(H2O)的结构。每个水分子由两个氢原子与一个氧原子共价结合而成。原子之间形成的键就是intramolecular(分子内的)力的例子。这些力决定了水分子的形状,并显著影响其物理和化学性质。例如,氢-氧-氢原子之间的角度约为104.5度,这是intramolecular(分子内的)键角的结果。这种独特的几何形状有助于水的高表面张力以及其溶解许多物质的能力,使其成为一种通用溶剂。与intramolecular(分子内的)力相对的是分子间力,这些力是不同分子之间的吸引或排斥力。虽然intramolecular(分子内的)力负责单个分子的稳定性和结构,但分子间力则支配多个分子之间的相互作用。例如,冰漂浮在水面上的原因是由于氢键,这是分子间力的一个例子,而这种力弱于将水分子结合在一起的intramolecular(分子内的)力。intramolecular(分子内的)力的重要性超越了简单的分子结构。在生物化学中,蛋白质和核酸(如DNA)的形成在很大程度上依赖于这些力。蛋白质中的氨基酸序列决定了其如何折叠成三维结构,而这种结构又是通过氢键、离子键和疏水相互作用等intramolecular(分子内的)相互作用来稳定的。同样,DNA的双螺旋结构是由核苷酸碱基之间的intramolecular(分子内的)氢键维持的。此外,理解intramolecular(分子内的)力在材料科学和药理学等多个领域具有实际应用。例如,新材料的开发通常涉及操纵intramolecular(分子内的)力,以创造更强或更灵活的物质。在制药领域,药物设计需要深入了解intramolecular(分子内的)相互作用如何影响药物的有效性和稳定性。总之,intramolecular(分子内的)力的概念是我们理解化学和生物学的基础。通过研究这些力,科学家可以深入了解分子的行为、复杂结构的形成以及支配生命本身的相互作用。随着研究的不断推进,intramolecular(分子内的)力的知识无疑将在未来的科学发现和创新中发挥关键作用。