pseudoscalar

简明释义

[/ˈsuːdoʊˌskælər/][/ˈsuːdoʊˌskælər/]

n. 假标量,赝标量;伪纯量;假纯数

英英释义

A pseudoscalar is a quantity that behaves like a scalar under proper transformations but changes sign under improper transformations, such as reflections.

伪标量是一个在适当变换下表现得像标量的量,但在不适当变换(如反射)下会改变符号。

单词用法

同义词

scalar

标量

In physics, a pseudoscalar is a quantity that behaves like a scalar under proper transformations but changes sign under improper transformations.

在物理学中,伪标量是指在适当变换下表现得像标量,但在不当变换下符号会改变的量。

vector

向量

Pseudoscalars are important in particle physics, particularly in the context of certain symmetries.

伪标量在粒子物理学中非常重要,特别是在某些对称性的背景下。

反义词

scalar

标量

A scalar quantity has only magnitude, such as temperature or mass.

标量量只有大小,例如温度或质量。

vector

向量

A vector quantity has both magnitude and direction, like velocity or force.

向量量既有大小又有方向,例如速度或力。

例句

1.The dot product of a pseudo vector and a vector is called a pseudoscalar.

一个赝矢量和一个矢量的标识称为赝标量。

2.The dot product of a pseudovector and a vector is called a pseudoscalar.

一个赝矢量和一个矢量的标识称为赝标量。

3.The dot product of a pseudo vector and a vector is called a pseudoscalar.

一个赝矢量和一个矢量的标识称为赝标量。

4.The Higgs boson is often described as a pseudoscalar 伪标量 field in theoretical models.

在理论模型中,希格斯玻色子通常被描述为一个 pseudoscalar 伪标量 场。

5.Mathematically, a pseudoscalar 伪标量 can be represented as a scalar quantity multiplied by a determinant.

在数学上,pseudoscalar 伪标量 可以表示为一个标量量乘以行列式。

6.In quantum mechanics, the pseudoscalar 伪标量 nature of certain particles can lead to interesting interactions.

在量子力学中,某些粒子的 pseudoscalar 伪标量 特性可以导致有趣的相互作用。

7.In particle physics, a pseudoscalar 伪标量 is a quantity that changes sign under parity transformation.

在粒子物理学中,pseudoscalar 伪标量 是一个在宇称变换下符号改变的量。

8.The axial vector and pseudoscalar 伪标量 components are crucial in understanding weak interactions.

轴向矢量和 pseudoscalar 伪标量 分量在理解弱相互作用中至关重要。

作文

In the realm of physics, particularly in the study of particle physics and quantum mechanics, the concept of a pseudoscalar plays a significant role. A pseudoscalar is a quantity that behaves like a scalar under proper transformations but changes sign under improper transformations, such as parity inversion. To understand this concept more clearly, we can compare it to a regular scalar, which remains unchanged regardless of the coordinate system or the orientation of the space. For example, temperature is a scalar quantity; it has magnitude but no direction. On the other hand, a pseudoscalar can be thought of as a 'pseudo' version of a scalar because it possesses certain unique properties that distinguish it from conventional scalars.The importance of pseudoscalars becomes evident when we delve into the world of symmetries in physics. Symmetry is a fundamental principle that governs the laws of nature. In particle physics, symmetries can lead to conservation laws, which are crucial for understanding interactions between particles. A common example of a pseudoscalar in physics is the product of two three-dimensional vectors, which results in a vector that can be associated with angular momentum. However, if we consider the behavior of this quantity under a reflection (an improper transformation), we find that it changes sign, thus qualifying it as a pseudoscalar.One of the most notable applications of pseudoscalars is in the context of the Higgs boson. The Higgs mechanism is a process by which particles acquire mass through their interaction with the Higgs field. The Higgs boson itself is often described as a pseudoscalar particle, which means it has specific properties that influence how it interacts with other particles. Understanding the nature of pseudoscalars like the Higgs boson is essential for physicists as they explore the fundamental forces and particles that constitute our universe.Furthermore, pseudoscalars also appear in various theoretical frameworks, including supersymmetry and string theory. These theories aim to provide a more comprehensive understanding of the fundamental forces and particles by introducing new symmetries and dimensions. In these contexts, pseudoscalars can have implications for the unification of forces and the behavior of particles at high energies.In conclusion, the concept of a pseudoscalar is an intriguing aspect of theoretical physics that highlights the complexity and beauty of the universe. By understanding how pseudoscalars behave under different transformations, physicists can gain deeper insights into the fundamental laws that govern particle interactions and the structure of matter. As research continues in areas such as particle physics, cosmology, and beyond, the role of pseudoscalars will undoubtedly remain a key topic of exploration, paving the way for new discoveries and advancements in our understanding of the cosmos.

在物理学领域,尤其是在粒子物理学和量子力学的研究中,伪标量这一概念发挥着重要作用。伪标量是一种在适当变换下表现得像标量的量,但在不适当变换(如对称反演)下会改变符号。为了更清楚地理解这一概念,我们可以将其与常规标量进行比较,后者在任何坐标系统或空间方向下都保持不变。例如,温度是一个标量量;它具有大小但没有方向。另一方面,伪标量可以被视为标量的“伪”版本,因为它具有某些独特的属性,使其与常规标量区分开来。伪标量的重要性在于,当我们深入探讨物理学中的对称性时变得显而易见。对称性是支配自然法则的基本原则。在粒子物理学中,对称性可以导致守恒定律,这对于理解粒子之间的相互作用至关重要。在物理学中,一个常见的伪标量例子是两个三维向量的乘积,其结果是一个可以与角动量相关联的向量。然而,如果我们考虑该量在反射(不适当变换)下的行为,我们会发现它改变了符号,从而使其符合伪标量的定义。伪标量的一个显著应用是在希格斯玻色子(Higgs boson)的背景下。希格斯机制是一个过程,通过该过程,粒子通过与希格斯场的相互作用获得质量。希格斯玻色子本身通常被描述为伪标量粒子,这意味着它具有特定的属性,影响其与其他粒子的相互作用。理解像伪标量这样的希格斯玻色子的性质对于物理学家探索构成我们宇宙的基本力量和粒子至关重要。此外,伪标量还出现在各种理论框架中,包括超对称和弦理论。这些理论旨在通过引入新的对称性和维度,提供对基本力量和粒子更全面的理解。在这些背景下,伪标量可能对力量的统一及高能粒子的行为产生影响。总之,伪标量的概念是理论物理学中一个引人入胜的方面,突显了宇宙的复杂性和美丽。通过理解伪标量在不同变换下的行为,物理学家可以深入了解支配粒子相互作用和物质结构的基本法则。随着在粒子物理学、宇宙学等领域的研究不断深入,伪标量的角色无疑将继续成为探索的关键主题,为我们对宇宙的理解开辟新的发现和进展的道路。