tensile stress
简明释义
拉伸应力
英英释义
Tensile stress is the measure of the amount of force acting on a material per unit area that tends to stretch or elongate the material. | 拉伸应力是指作用在材料上的单位面积力的量度,该力倾向于拉伸或延长材料。 |
例句
1.Calculating tensile stress 拉伸应力 helps engineers predict how materials will behave under load.
计算拉伸应力帮助工程师预测材料在负载下的表现。
2.During the testing phase, the tensile stress 拉伸应力 of the material was measured to determine its strength.
在测试阶段,测量了材料的拉伸应力以确定其强度。
3.Understanding tensile stress 拉伸应力 is crucial for designing durable structures.
理解拉伸应力对于设计耐用结构至关重要。
4.The engineer calculated the tensile stress 拉伸应力 on the bridge cables to ensure safety.
工程师计算了桥梁钢缆上的拉伸应力以确保安全。
5.The tensile stress 拉伸应力 in the steel rod exceeded the allowable limits during the experiment.
在实验中,钢棒中的拉伸应力超过了允许的极限。
作文
Tensile stress is a fundamental concept in the field of materials science and engineering. It refers to the internal stress that occurs when a material is subjected to a pulling or stretching force. When a material experiences a tensile force, it tends to elongate, and this elongation creates a distribution of internal forces within the material. The measure of this internal force per unit area is known as tensile stress (拉伸应力). Understanding tensile stress is crucial for engineers and designers who work with various materials, as it helps them predict how materials will behave under different loading conditions.In practical applications, tensile stress plays a significant role in determining the strength and durability of structures. For example, consider the construction of a bridge. The cables that support the bridge experience tensile stress as they hold up the weight of the structure and any traffic that crosses it. Engineers must calculate the maximum tensile stress that these cables can withstand to ensure the safety and stability of the bridge. If the tensile stress exceeds the material's yield strength, the cables may fail, leading to catastrophic consequences.Another important aspect of tensile stress is its relationship with material properties such as elasticity and ductility. Elastic materials can return to their original shape after the removal of the tensile load, while ductile materials can undergo significant deformation before failure. Understanding these properties allows engineers to select the appropriate materials for specific applications based on the expected tensile stress they will encounter.Moreover, tensile stress is not only relevant in large-scale engineering projects but also in everyday products. For instance, the design of a simple rubber band involves understanding how it stretches and the tensile stress it experiences when pulled. The material must be able to handle the forces applied without breaking, making knowledge of tensile stress vital for product designers.In conclusion, tensile stress is a critical factor in the analysis and design of materials and structures. Its understanding influences everything from the safety of large infrastructures like bridges to the functionality of everyday items. By mastering the concept of tensile stress, engineers and designers can create safer, more efficient, and more durable products and structures, ultimately enhancing our quality of life. As technology advances and materials science evolves, the importance of understanding tensile stress will continue to grow, paving the way for innovative solutions to engineering challenges.
拉伸应力是材料科学和工程领域的一个基本概念。它指的是当材料受到拉伸或拉扯力时所产生的内部应力。当材料经历拉伸力时,它会倾向于延长,而这种延长在材料内部产生了应力分布。这个单位面积内的内部力的度量被称为拉伸应力(tensile stress)。理解拉伸应力对于从事各种材料工作的工程师和设计师至关重要,因为它帮助他们预测材料在不同载荷条件下的行为。在实际应用中,拉伸应力在决定结构的强度和耐久性方面起着重要作用。例如,考虑一座桥的建设。支撑桥梁的电缆在承受结构和任何通过的交通的重量时经历拉伸应力。工程师必须计算这些电缆能够承受的最大拉伸应力,以确保桥梁的安全和稳定。如果拉伸应力超过材料的屈服强度,电缆可能会失效,导致灾难性的后果。拉伸应力的另一个重要方面是它与材料性质如弹性和延展性的关系。弹性材料在去除拉伸负载后能够恢复到原始形状,而延展性材料在破坏之前可以经历显著的变形。理解这些属性使工程师能够根据预期的拉伸应力选择适合特定应用的材料。此外,拉伸应力不仅与大型工程项目相关,也与日常产品息息相关。例如,一个简单的橡皮筋的设计涉及理解它如何拉伸以及在拉动时经历的拉伸应力。材料必须能够承受施加的力而不破裂,因此对拉伸应力的知识对产品设计师至关重要。总之,拉伸应力是材料和结构分析与设计中的关键因素。它的理解影响着从大型基础设施如桥梁的安全到日常物品的功能性的一切。通过掌握拉伸应力的概念,工程师和设计师可以创造出更安全、更高效和更耐用的产品和结构,最终提升我们的生活质量。随着技术的进步和材料科学的发展,理解拉伸应力的重要性将继续增长,为工程挑战的创新解决方案铺平道路。