tensile deformation
简明释义
拉伸变形
英英释义
Tensile deformation refers to the change in shape or size of a material when it is subjected to tensile stress, which is the force that pulls the material apart. | 拉伸变形是指材料在受到拉伸应力(将材料拉开的力)作用时,形状或大小的变化。 |
例句
1.The engineer measured the amount of tensile deformation 拉伸变形 in the steel beam to ensure it would support the load.
工程师测量了钢梁中tensile deformation 拉伸变形 的程度,以确保它能够支撑负载。
2.During the experiment, we observed significant tensile deformation 拉伸变形 in the polymer samples.
在实验过程中,我们观察到聚合物样品中有显著的tensile deformation 拉伸变形。
3.The tensile test provided data on the tensile deformation 拉伸变形 characteristics of the alloy.
拉伸测试提供了合金的tensile deformation 拉伸变形 特性数据。
4.Understanding tensile deformation 拉伸变形 is crucial for material selection in construction projects.
理解tensile deformation 拉伸变形 对于建筑项目中的材料选择至关重要。
5.Researchers are studying how tensile deformation 拉伸变形 affects the fatigue life of materials.
研究人员正在研究tensile deformation 拉伸变形 如何影响材料的疲劳寿命。
作文
Tensile deformation is a fundamental concept in materials science and engineering that describes the change in shape or size of a material when subjected to tensile forces. When a material is stretched, it experiences what is known as tensile deformation (拉伸变形). This process is crucial for understanding how materials behave under stress and is essential for designing structures and components that can withstand various loads.Materials exhibit different types of deformation when they are subjected to external forces. Tensile deformation specifically refers to the elongation that occurs when a material is pulled apart. The degree of tensile deformation (拉伸变形) a material can undergo before failure is an important property known as ductility. Ductile materials, such as steel and aluminum, can undergo significant tensile deformation (拉伸变形) without breaking, making them ideal for construction and manufacturing applications.The study of tensile deformation (拉伸变形) involves understanding the stress-strain relationship of materials. Stress is defined as the force applied per unit area, while strain is the measure of deformation representing the displacement between particles in a material body. The relationship between stress and strain is typically linear for small deformations, following Hooke's Law, which states that stress is directly proportional to strain within the elastic limit of the material. Beyond this limit, materials may enter the plastic deformation stage, where permanent changes occur in their structure.In practical applications, engineers must consider the tensile deformation (拉伸变形) characteristics of materials when designing products. For instance, in the automotive industry, components such as frames and suspension parts must be made from materials that can endure significant tensile forces without failing. Understanding the limits of tensile deformation (拉伸变形) helps engineers select appropriate materials that ensure safety and performance.Moreover, the phenomenon of tensile deformation (拉伸变形) is not limited to metals; polymers and composites also exhibit this behavior. However, the mechanisms by which these materials deform can differ significantly. For example, polymers may show viscoelastic behavior, where they exhibit both viscous and elastic characteristics. This means that under sustained tensile loading, they can continue to deform over time, a property that must be accounted for in design considerations.In conclusion, tensile deformation (拉伸变形) is a critical aspect of material behavior that influences the design and application of various engineering materials. By understanding how materials respond to tensile forces, engineers can create safer and more efficient structures and components. As technology advances, the study of tensile deformation (拉伸变形) will continue to evolve, leading to the development of new materials and innovative applications across various industries.
拉伸变形是材料科学和工程中的一个基本概念,描述了当材料受到拉伸力时形状或尺寸的变化。当材料被拉伸时,它会经历所谓的tensile deformation(拉伸变形)。这个过程对于理解材料在应力下的行为至关重要,并且在设计能够承受各种负荷的结构和组件时是必不可少的。材料在受到外力作用时会表现出不同类型的变形。拉伸变形特别指的是当材料被拉开时发生的延伸。材料在破坏之前能够经历的tensile deformation(拉伸变形)的程度是一个重要的性质,称为延展性。延展性材料,如钢和铝,可以在不破裂的情况下经历显著的tensile deformation(拉伸变形),使它们成为建筑和制造应用的理想选择。tensile deformation(拉伸变形)的研究涉及理解材料的应力-应变关系。应力定义为单位面积上施加的力,而应变是表示材料体内粒子之间位移的变形度量。应力与应变之间的关系通常在小变形范围内是线性的,遵循胡克定律,该定律指出,在材料的弹性极限内,应力与应变成正比。超出这一极限,材料可能进入塑性变形阶段,此时其结构发生永久性变化。在实际应用中,工程师在设计产品时必须考虑材料的tensile deformation(拉伸变形)特性。例如,在汽车工业中,框架和悬挂部件等组件必须由能够承受显著拉伸力而不失效的材料制成。了解tensile deformation(拉伸变形)的极限有助于工程师选择合适的材料,从而确保安全性和性能。此外,tensile deformation(拉伸变形)的现象并不限于金属;聚合物和复合材料也表现出这种行为。然而,这些材料变形的机制可能大相径庭。例如,聚合物可能表现出粘弹性行为,即它们同时具有粘性和弹性特征。这意味着在持续的拉伸载荷下,它们可能会随着时间的推移继续变形,这一特性在设计考虑中必须加以考虑。总之,tensile deformation(拉伸变形)是材料行为的关键方面,影响着各种工程材料的设计和应用。通过理解材料如何响应拉伸力,工程师可以创造出更安全、更高效的结构和组件。随着技术的发展,tensile deformation(拉伸变形)的研究将继续发展,促进新材料和各种行业创新应用的开发。
相关单词