biomechanics

简明释义

[ˌbaɪəʊməˈkænɪks][ˌbaɪoʊməˈkænɪks]

n. 生物力学;生物机械学

英英释义

Biomechanics is the study of the mechanical laws relating to the movement or structure of living organisms.

生物力学是研究与生物体的运动或结构相关的力学法则的学科。

单词用法

sports biomechanics

运动生物力学

clinical biomechanics

临床生物力学

musculoskeletal biomechanics

肌肉骨骼生物力学

human biomechanics

人体生物力学

biomechanics research

生物力学研究

biomechanics analysis

生物力学分析

biomechanics principles

生物力学原理

biomechanics applications

生物力学应用

同义词

kinematics

运动学

Kinematics studies the motion of bodies without considering the forces involved.

运动学研究物体的运动而不考虑涉及的力。

dynamics

动力学

Dynamics focuses on the forces and torques that cause motion.

动力学关注导致运动的力和扭矩。

mechanics of movement

运动力学

The mechanics of movement is essential in understanding how athletes perform.

运动力学对于理解运动员的表现至关重要。

反义词

psychomechanics

心理力学

Psychomechanics explores the relationship between mental processes and physical movements.

心理力学探讨心理过程与身体运动之间的关系。

static mechanics

静力学

Static mechanics is essential for understanding forces in structures that do not move.

静力学对于理解不动结构中的力至关重要。

例句

1.We'll talk about exactly what a gel is later when we talk about biomechanics and cells are suspended within it.

当我们讲到生物力学和细胞悬浮在凝胶中的时候,我们会讲到凝胶到底是什么。

2.Biomechanics is an interdisciplinary formed by the mutual pervasion and cross of mechanism, biology, mechanics and medicine.

生物力学是机构学、生物学、力学、医学相互交叉渗透形成的边缘学科。

3.Any weaknesses can throw off your biomechanics and cost you more energy.

薄弱环节会背离你的生物力学特性并耗费更多的能量。

4.That will throw off your body’s biomechanics.

那将会使你的身体偏离生物力学。

5.Study Design. In vitro flexibility test comparing biomechanics of cervical corpectomy versus discectomy with and without instrumentation.

研究设计:通过体外扰度试验,对颈椎椎体切除与椎间盘切除内固定或非内固定进行生物力学比较。

6.OBJECTIVE: To summarize the application and characteristics of sports biomechanics in various sports, especially in calisthenics.

目的:概述运动生物力学在各体育运动,尤其是健美操运动中的应用及特征。

7.They come from the fields of biomechanics, sports podiatry, and physical therapy.

他们来自生物力学,运动足部学,和理疗等不同领域。

8.Michael Dickinson has been interviewed hundreds of times about his research on the biomechanics of insect flight.

MichaelDickinson已经接受了数百次采访,采访内容都和他在生物力学上的一项研究有关:昆虫飞行。

9.Research in biomechanics 生物力学 has led to advancements in prosthetic technology.

生物力学方面的研究促进了假肢技术的进步。

10.Physical therapists often use biomechanics 生物力学 to assess their patients' movements.

物理治疗师常常使用生物力学来评估患者的运动。

11.Injuries can be analyzed through the lens of biomechanics 生物力学 to prevent future occurrences.

通过生物力学的视角分析伤害可以防止未来的发生。

12.Understanding biomechanics 生物力学 can aid in designing better sports equipment.

理解生物力学可以帮助设计更好的运动器材。

13.The study of biomechanics 生物力学 helps athletes improve their performance.

生物力学的研究帮助运动员提高他们的表现。

作文

Biomechanics is a fascinating field that lies at the intersection of biology and mechanics. It involves the study of the mechanical aspects of living organisms, particularly how muscles, bones, tendons, and ligaments work together to produce movement. The term biomechanics (生物力学) itself encapsulates this blend of biological and mechanical principles, making it essential for understanding how living beings interact with their environment. One of the primary applications of biomechanics (生物力学) is in the field of sports science. Athletes constantly strive to enhance their performance, and understanding the mechanics of their movements can provide valuable insights. For instance, by analyzing the biomechanics of a sprinter's running technique, coaches can identify inefficiencies and suggest improvements. This can lead to better speed, reduced risk of injury, and overall enhanced athletic performance.Moreover, biomechanics (生物力学) plays a crucial role in rehabilitation. Physical therapists utilize biomechanical principles to design effective treatment plans for patients recovering from injuries. By understanding how forces act on the body, therapists can create exercises that strengthen specific muscle groups while avoiding further injury. This tailored approach not only accelerates recovery but also helps patients regain their functional capabilities more effectively.In addition to sports and rehabilitation, biomechanics (生物力学) is integral to the design of medical devices and prosthetics. Engineers and designers who specialize in this field analyze the movements and forces involved in human motion to create devices that mimic natural movement. For example, advanced prosthetic limbs are now designed with sensors and motors that replicate the way a real limb moves, providing users with a more natural experience. This innovation has significantly improved the quality of life for individuals with limb loss.Furthermore, biomechanics (生物力学) has implications in ergonomics, which focuses on optimizing human well-being and overall system performance. By applying biomechanical principles, workplaces can be designed to reduce strain and discomfort for employees. For example, understanding the biomechanics of lifting can inform proper techniques and tools to prevent injuries in manual labor settings. This proactive approach not only enhances worker safety but also boosts productivity.As technology continues to advance, the field of biomechanics (生物力学) is evolving rapidly. Innovations such as motion capture systems and computer simulations allow researchers to analyze human movement with unprecedented precision. These tools enable scientists to explore complex biomechanical phenomena, leading to new discoveries that can revolutionize healthcare, sports performance, and rehabilitation strategies.In conclusion, biomechanics (生物力学) is a vital discipline that bridges the gap between biology and mechanics. Its applications span across various fields, including sports, rehabilitation, medical device design, and ergonomics. As we continue to explore the intricacies of human movement through biomechanical analysis, we unlock new possibilities for enhancing health, performance, and quality of life. Understanding biomechanics (生物力学) is essential for anyone interested in the sciences, as it provides a deeper insight into the mechanics of life itself.

生物力学是一个迷人的领域,位于生物学和力学的交汇处。它涉及对生物体机械方面的研究,特别是肌肉、骨骼、肌腱和韧带如何共同工作以产生运动。术语biomechanics(生物力学)本身概括了这种生物和机械原理的结合,使其对于理解生物体如何与环境互动至关重要。biomechanics(生物力学)的主要应用之一是在体育科学领域。运动员不断努力提高他们的表现,理解他们动作的力学可以提供宝贵的见解。例如,通过分析短跑运动员的跑步技术,教练可以识别低效之处并提出改进建议。这可以提高速度,降低受伤风险,并整体提升运动表现。此外,biomechanics(生物力学)在康复中也发挥着关键作用。物理治疗师利用生物力学原理为恢复受伤的患者设计有效的治疗计划。通过理解力量如何作用于身体,治疗师可以制定加强特定肌肉群的锻炼,同时避免进一步受伤。这种量身定制的方法不仅加速了康复过程,还帮助患者更有效地恢复功能能力。除了体育和康复,biomechanics(生物力学)在医疗设备和假肢的设计中也至关重要。专注于这一领域的工程师和设计师分析人类运动中的运动和力量,以创造模仿自然运动的设备。例如,先进的假肢现在配备有传感器和电动机,能够复制真实肢体的运动,为用户提供更自然的体验。这一创新显著改善了失肢者的生活质量。此外,biomechanics(生物力学)在人体工程学中具有重要意义,后者专注于优化人类福祉和整体系统性能。通过应用生物力学原理,可以设计出减少员工疲劳和不适的工作场所。例如,理解举重的生物力学可以告知防止手工劳动环境中受伤的正确技术和工具。这种主动的方法不仅提高了工人安全性,还提升了生产力。随着技术的不断进步,biomechanics(生物力学)领域正在迅速发展。运动捕捉系统和计算机模拟等创新使研究人员能够以前所未有的精确度分析人类运动。这些工具使科学家能够探索复杂的生物力学现象,从而导致新的发现,这些发现可以彻底改变医疗保健、运动表现和康复策略。总之,biomechanics(生物力学)是一个重要学科,弥合了生物学和力学之间的鸿沟。其应用跨越多个领域,包括体育、康复、医疗设备设计和人体工程学。随着我们继续通过生物力学分析探索人类运动的复杂性,我们为改善健康、表现和生活质量开辟了新可能。理解biomechanics(生物力学)对任何对科学感兴趣的人来说都是必不可少的,因为它提供了对生命本身力学的更深刻理解。