radioisotopic
简明释义
英[ˌreɪ.di.oʊ.aɪˈsɒt.ɪk]美[ˌreɪ.di.oʊ.aɪˈsɑ.tɪk]
adj. 放射性同位素的
英英释义
Relating to or characterized by the use of radioisotopes, which are isotopes that emit radiation as they decay. | 与放射性同位素相关或特征化,放射性同位素是指在衰变过程中发出辐射的同位素。 |
单词用法
放射性同位素技术 | |
放射性同位素研究 | |
放射性同位素排放 | |
放射性同位素示踪剂 | |
放射性同位素测年 | |
放射性同位素源 |
同义词
反义词
例句
1.Radioisotopic tracer technology measuring water entry profile has been used in oil fields for a long time.
放射性同位素示踪法测吸水剖面工艺在油田已应用很久了。
2.Radioisotopic tracer technology measuring water entry profile has been used in oil fields for a long time.
放射性同位素示踪法测吸水剖面工艺在油田已应用很久了。
3.After treating for 4 weeks, the gastric emptying rate of rats was measured by radioisotopic technique.
用药4周后,用放射性核素法检测其胃的排空率。
4.In medicine, radioisotopic 放射性同位素 tracers are often used in imaging techniques to diagnose conditions.
在医学中,放射性同位素示踪剂常用于成像技术以诊断疾病。
5.Nuclear power plants often utilize radioisotopic 放射性同位素 materials for energy production.
核电站通常利用放射性同位素材料进行能源生产。
6.The use of radioisotopic 放射性同位素 dating has revolutionized archaeology by allowing scientists to accurately date ancient artifacts.
放射性同位素测定法的使用彻底改变了考古学,使科学家能够准确地为古代文物定年。
7.The radioisotopic 放射性同位素 analysis of soil samples can provide insight into past environmental conditions.
土壤样本的放射性同位素分析可以提供对过去环境条件的洞察。
8.Researchers are studying the effects of radioisotopic 放射性同位素 contamination in marine ecosystems.
研究人员正在研究放射性同位素污染对海洋生态系统的影响。
作文
The field of medicine has greatly benefited from advancements in technology, particularly in the area of diagnostics and treatment. One of the most significant contributions to this field is the use of radioisotopic (放射性同位素的) techniques. These methods utilize the properties of certain isotopes that emit radiation to provide critical information about the functioning of organs and tissues in the human body. By employing radioisotopic (放射性同位素的) imaging, healthcare professionals can detect abnormalities at an early stage, leading to timely interventions that could save lives.In nuclear medicine, radioisotopic (放射性同位素的) tracers are often injected into the patient’s body. These tracers are designed to target specific organs or cellular processes. For instance, a common procedure involves the use of fluorodeoxyglucose (FDG), a radioisotopic (放射性同位素的) compound that highlights areas of increased metabolic activity, which is often indicative of cancer. The ability to visualize such processes provides invaluable insights that traditional imaging techniques may overlook.Beyond diagnostics, radioisotopic (放射性同位素的) therapies are also revolutionizing the treatment of various diseases. In particular, the use of radioisotopic (放射性同位素的) iodine for treating thyroid conditions has been a breakthrough. Patients with hyperthyroidism or thyroid cancer can receive targeted therapy that minimizes damage to surrounding healthy tissues. This precision in treatment exemplifies how radioisotopic (放射性同位素的) applications can enhance patient outcomes.However, the use of radioisotopic (放射性同位素的) materials is not without challenges. Safety concerns regarding radiation exposure must be addressed rigorously. Medical professionals are trained to follow strict protocols to ensure that the levels of radiation administered are safe and effective. Regulatory bodies continuously monitor the use of radioisotopic (放射性同位素的) substances to protect both patients and healthcare providers.Moreover, research continues to expand the range of radioisotopic (放射性同位素的) applications in medicine. Innovations in the development of new isotopes and compounds promise to enhance the specificity and effectiveness of treatments and diagnostics. The future of radioisotopic (放射性同位素的) medicine looks promising, with ongoing studies aimed at improving the safety and efficacy of these techniques.In conclusion, the role of radioisotopic (放射性同位素的) technology in modern medicine cannot be overstated. From diagnosing diseases to providing targeted therapies, the impact of radioisotopic (放射性同位素的) methods is profound. As we continue to explore the potential of these techniques, it is essential to balance innovation with safety, ensuring that the benefits of radioisotopic (放射性同位素的) medicine are realized without compromising patient health. The integration of radioisotopic (放射性同位素的) approaches into clinical practice represents a significant step forward in our quest to improve health outcomes and advance medical science.
医学领域因技术进步而受益匪浅,特别是在诊断和治疗方面。其中最重要的贡献之一就是使用放射性同位素的技术。这些方法利用某些发射辐射的同位素的特性,为人体器官和组织的功能提供关键信息。通过采用放射性同位素的成像,医疗专业人员可以在早期发现异常,从而进行及时干预,可能挽救生命。在核医学中,放射性同位素的示踪剂通常被注入患者体内。这些示踪剂旨在针对特定器官或细胞过程。例如,一种常见的程序涉及使用氟脱氧葡萄糖(FDG),这是一种放射性同位素的化合物,可以突出显示代谢活动增加的区域,这通常表明癌症的存在。可视化此类过程的能力提供了传统成像技术可能忽视的宝贵见解。除了诊断,放射性同位素的疗法也在各种疾病的治疗中带来了革命性的变化。特别是,使用放射性同位素的碘治疗甲状腺疾病是一项突破。患有甲状腺功能亢进或甲状腺癌的患者可以接受靶向治疗,最小化对周围健康组织的损害。这种治疗的精确性例证了如何增强患者结果的放射性同位素的应用。然而,使用放射性同位素的材料并非没有挑战。必须严格解决有关辐射暴露的安全问题。医疗专业人员经过培训,遵循严格的协议,以确保施加的辐射水平是安全有效的。监管机构持续监测放射性同位素的物质的使用,以保护患者和医疗提供者。此外,研究继续扩大放射性同位素的医学应用范围。新同位素和化合物的开发创新承诺提高治疗和诊断的特异性和有效性。放射性同位素的医学的未来看起来很有希望,正在进行的研究旨在提高这些技术的安全性和有效性。总之,放射性同位素的技术在现代医学中的作用不容小觑。从诊断疾病到提供靶向治疗,放射性同位素的方法的影响深远。随着我们继续探索这些技术的潜力,平衡创新与安全至关重要,确保实现放射性同位素的医学的好处,而不妨碍患者健康。将放射性同位素的方法融入临床实践代表了我们改善健康结果和推动医学科学发展的重要一步。