backtracking
简明释义
v. 原路返回;出尔反尔;跟踪(backtrack 的现在分词)
英英释义
单词用法
回溯搜索 | |
回溯技术 | |
回溯方法 | |
回溯问题 | |
执行回溯 | |
应用回溯 | |
使用回溯 | |
实现回溯 |
同义词
回溯 | 侦探正在回溯嫌疑人的行踪。 | ||
修订 | 经过一番思考,她正在修订她的初步计划。 | ||
重新考虑 | 他正在重新考虑搬到另一个城市的决定。 | ||
恢复 | 该软件允许用户恢复到先前的版本。 |
反义词
前进 | 团队在这个季度朝着目标前进。 | ||
进展 | We are progressing well with the project, ahead of schedule. | 我们在项目上进展顺利,提前完成了计划。 |
例句
1.However, backtracking is computationally expensive and can easily get out of hand if you're not careful.
然而,回溯计算代价昂贵,如果你不够小心的话容易失控。
2.As a basic control structure in computer science, backtracking has been widely used in artificial intelligence.
回溯作为计算机科学中的一种基本的控制结构,在人工智能中有广泛的应用。
3.Thus you can’t play all 29 Campaign missions in a single pass without backtracking.
因此,您不可能一次就完成全部29场战役。
4.This paper studies redesign problem solving strategy theory based on dependency-directed backtracking in expert system for design.
本文详细研究了应用相关性制导回溯实现设计类专家系统再设计控制策略的理论和方法。
5.This is the strategy to avoid the need of a backtracking algorithm.
这是策略,避免了回溯算法的需要。
6.At this point, the atomic group will kick in. The engine will discard all backtracking positions.
此时,最小组团就发挥作用了:正则引擎会放弃所有回溯位置。
7.Layering, layouts, backtracking, and styling are all trivial in Seaside.
分层、布局、回溯和样式在Seaside中是家常便饭。
8.This scheduling algorithm takes the bipartite graph matching and the backtracking techniques as mathematical tools.
该算法以偶图匹配、回溯技术为数学工具。
9.In programming, backtracking is often used to solve complex problems like Sudoku.
在编程中,回溯常用于解决复杂问题,如数独。
10.The algorithm uses backtracking to find all possible solutions to the puzzle.
该算法使用回溯来找到拼图的所有可能解决方案。
11.After realizing he took a wrong turn, he started backtracking to find the correct path.
意识到自己走错了路后,他开始回溯以找到正确的路径。
12.She had to do some backtracking in her research to verify the original sources.
她不得不在研究中进行一些回溯以验证原始来源。
13.The team is backtracking their steps to determine where the project went off course.
团队正在回溯他们的步骤,以确定项目哪里出现了偏差。
作文
Backtracking is a problem-solving technique that involves exploring all possible options and systematically eliminating those that do not lead to a solution. This method can be particularly useful in situations where the solution requires a series of decisions or steps, such as in puzzles, games, or complex algorithms. In essence, backtracking (回溯) allows us to navigate through a maze of possibilities, ensuring that we do not overlook any potential solutions.One of the most common examples of backtracking (回溯) in action is the classic N-Queens problem, where the goal is to place N queens on an N x N chessboard so that no two queens threaten each other. The challenge lies in the fact that placing a queen in one row can affect the placement of queens in subsequent rows. By employing the technique of backtracking (回溯), we can try placing a queen in a specific position, and if we find that this leads to a conflict later on, we can simply 'backtrack' and try a different position.This method is not only limited to chess problems; it is widely used in various fields such as computer science, artificial intelligence, and even in everyday decision-making processes. For instance, when trying to solve a Sudoku puzzle, we often use backtracking (回溯) to fill in the grid. We start by placing a number in an empty cell, and if at any point we realize that this choice leads to an impossible situation, we can go back and change our previous choices until we find a valid configuration.The beauty of backtracking (回溯) lies in its systematic approach. It provides a structured way to explore all potential solutions without getting lost in the multitude of choices available. This is particularly important in complex problems where intuition alone may not suffice. By using backtracking (回溯), we can ensure that every possibility is considered, making it a comprehensive method for problem-solving.Moreover, backtracking (回溯) can be optimized further with techniques such as pruning, which involves cutting off branches of the search tree that do not need to be explored. For example, if during a Sudoku solving process we find that a certain number cannot fit into a particular row or column, we can immediately disregard any configurations that involve that number in those areas. This optimization significantly reduces the time and effort required to reach a solution.In conclusion, backtracking (回溯) is a powerful tool for tackling complex problems. Whether you are solving a mathematical puzzle, programming a computer algorithm, or making decisions in your daily life, understanding and applying the principles of backtracking (回溯) can enhance your problem-solving skills. As we continue to encounter increasingly intricate challenges in various domains, mastering this technique will undoubtedly serve us well, allowing us to navigate through uncertainty and arrive at effective solutions with confidence.
回溯是一种解决问题的技巧,涉及探索所有可能的选项,并系统地消除那些不导致解决方案的选项。这种方法在需要一系列决策或步骤的情况下特别有用,例如在谜题、游戏或复杂算法中。归根结底,backtracking(回溯)使我们能够在可能性的迷宫中导航,确保我们不会忽视任何潜在的解决方案。一个最常见的例子是经典的N皇后问题,其目标是在N x N的棋盘上放置N个皇后,以便没有两个皇后互相威胁。挑战在于,在一行中放置一个皇后可能会影响后续行中皇后的放置。通过采用backtracking(回溯)技术,我们可以尝试将皇后放置在特定位置,如果发现这导致后来的冲突,我们可以简单地“回溯”并尝试不同的位置。这种方法不仅限于棋类问题;它广泛应用于计算机科学、人工智能,甚至日常决策过程中。例如,在尝试解决数独谜题时,我们通常使用backtracking(回溯)来填充网格。我们从在一个空单元格中放置一个数字开始,如果在任何时候我们意识到这个选择导致了不可能的情况,我们可以回去更改之前的选择,直到找到有效的配置。backtracking(回溯)的美在于其系统化的方法。它提供了一种结构化的方式来探索所有潜在的解决方案,而不会在可用选择的众多选项中迷失。这在复杂问题中尤为重要,因为仅凭直觉可能不足够。通过使用backtracking(回溯),我们可以确保考虑每一种可能性,使其成为一种全面的问题解决方法。此外,backtracking(回溯)还可以通过修剪等技术进一步优化,修剪涉及切断不需要探索的搜索树的分支。例如,在数独解决过程中,如果我们发现某个数字无法放入特定的行或列,我们可以立即忽略任何涉及该数字在这些区域中的配置。这种优化显著减少了达到解决方案所需的时间和精力。总之,backtracking(回溯)是应对复杂问题的一种强大工具。无论你是在解决数学难题、编写计算机算法,还是在日常生活中做决策,理解和应用backtracking(回溯)的原则都能提高你的问题解决能力。随着我们在各个领域面临越来越复杂的挑战,掌握这一技术无疑会让我们受益匪浅,使我们能够自信地在不确定性中导航,并找到有效的解决方案。