polygonal
简明释义
adj. [数] 多边形的;[数] 多角形的
英英释义
Relating to or having the shape of a polygon, which is a plane figure that is bounded by a finite number of straight line segments. | 与多边形相关或具有多边形的形状,指的是被有限数量的直线段所围成的平面图形。 |
单词用法
多边形形状 | |
多边形结构 | |
多边形几何 | |
多边形模型 | |
多边形网格 | |
多边形网络 |
同义词
多边的 | 该多边协议由几个国家签署。 | ||
几何的 | 几何形状常用于现代艺术。 | ||
角形的 | 建筑设计采用了角形结构。 |
反义词
例句
1.I could have, you know, polygonal figures, that are a sequence of segments.
现在我还可以对它进行延伸,我可以,你知道的,建造一个多边形。
2.Fills the polygonal area on the screen.
填充屏幕上的多边形区域。
3.Results (1) Morphological characteristics of LEC: They were flat, elongated or polygonal shape.
结果(1)淋巴管内皮细胞的形态学特征:内皮细胞呈扁平、短梭形或多角形。
4.In this example I used the polygonal lasso tool for the house, and a soft eraser for the bushes.
在本例中,我使用多边形套索工具抠出房子,然后用一个软的橡皮擦去掉多余的树木。
5.Grab the Polygonal Lasso Tool (l) and select the landscape, it doesn't have to be very precise.
抓斗的多边形套索工具(L)和选择的景观,它并没有非常精确。
6.Be in orthogonal turning point, also can design polygonal condole ark.
在直角拐角处,也可以设计出多边形的吊柜。
7.Cut it out along the eye's line with Polygonal Lasso Tool.
使用多边形套索工具沿着眼角线条将云彩选择并裁剪。
8.Adopting geometric method, the rational function interpolation is constructed on polygonal element.
采用几何的方法构造出多边形单元上的有理函数插值。
9.The artist created a stunning mural featuring polygonal 多边形的 patterns.
艺术家创作了一幅惊艳的壁画,展示了多边形的图案。
10.The architect designed a modern building with a unique polygonal 多边形的 shape.
建筑师设计了一座独特的现代建筑,其形状为多边形的。
11.To improve the design, we need to analyze the polygonal 多边形的 structure of the object.
为了改善设计,我们需要分析物体的多边形的结构。
12.The game features polygonal 多边形的 terrain that enhances the gaming experience.
这款游戏具有多边形的地形,增强了游戏体验。
13.In computer graphics, polygonal 多边形的 models are often used for rendering 3D objects.
在计算机图形学中,多边形的模型通常用于渲染3D对象。
作文
In the realm of geometry, shapes play a crucial role in understanding the world around us. One such fascinating category of shapes is the polygonal shapes. A polygonal figure is defined as a two-dimensional geometric figure that consists of a finite number of straight line segments connected to form a closed polygon. These segments are called edges, and the points where they meet are known as vertices. The simplest example of a polygonal shape is a triangle, which has three edges and three vertices. As we delve deeper into the classification of polygonal shapes, we encounter various forms, such as quadrilaterals, pentagons, hexagons, and so forth, each distinguished by the number of their sides and angles.Understanding polygonal shapes is not just an academic exercise; it has practical applications in various fields. For instance, architects and engineers frequently use polygonal designs in constructing buildings and bridges. The stability and aesthetic appeal of structures often rely on the careful consideration of polygonal configurations. Moreover, in computer graphics, polygonal models serve as the foundation for creating complex 3D objects. By manipulating polygonal meshes, artists can design intricate characters and environments for video games and animations.The beauty of polygonal shapes lies in their diversity. Each polygonal type possesses unique properties. For example, regular polygonal shapes, where all sides and angles are equal, exhibit symmetry and balance, making them aesthetically pleasing. On the other hand, irregular polygonal shapes, with varying side lengths and angles, can create dynamic and interesting designs. This versatility allows artists and designers to experiment with different polygonal forms, pushing the boundaries of creativity.Furthermore, the study of polygonal shapes extends beyond traditional geometry. In advanced mathematics, concepts such as polygonal numbers emerge, which represent figures that can be arranged in the shape of a polygon. For instance, triangular numbers and square numbers are specific cases of polygonal numbers, illustrating the interconnectedness of mathematical concepts.In conclusion, the term polygonal encompasses a wide range of shapes that are fundamental to both mathematics and practical applications. From the simple triangle to complex polygonal models in computer graphics, these shapes are integral to our understanding of spatial relationships. Whether in engineering, art, or mathematics, the significance of polygonal shapes cannot be overstated. They not only help us comprehend the physical world but also inspire creativity and innovation across various disciplines. As we continue to explore the vast possibilities within polygonal geometry, we unlock new ways to interpret and interact with our environment, proving that geometry is indeed the language of the universe.
在几何学的领域中,形状在理解我们周围的世界中发挥着至关重要的作用。其中一个引人入胜的形状类别是多边形形状。多边形图形被定义为由有限数量的直线段组成的二维几何图形,这些线段连接形成一个封闭的多边形。这些线段称为边,而它们相交的点被称为顶点。多边形形状的最简单例子是三角形,它有三条边和三个顶点。当我们深入研究多边形形状的分类时,我们会遇到各种形式,例如四边形、五边形、六边形等,每种形状都以其边和角的数量为特征。理解多边形形状不仅仅是学术上的练习;它在各个领域都有实际应用。例如,建筑师和工程师在建造建筑物和桥梁时经常使用多边形设计。结构的稳定性和美学吸引力往往依赖于对多边形配置的仔细考虑。此外,在计算机图形学中,多边形模型作为创建复杂3D对象的基础。通过操纵多边形网格,艺术家可以设计出复杂的角色和环境,用于视频游戏和动画。多边形形状的美在于它们的多样性。每种多边形类型都具有独特的属性。例如,所有边和角相等的规则多边形形状表现出对称和平衡,使它们在美学上令人愉悦。另一方面,不规则的多边形形状,具有不同的边长和角度,可以创造出动态和有趣的设计。这种多功能性使艺术家和设计师能够尝试不同的多边形形式,推动创造力的界限。此外,对多边形形状的研究超越了传统几何。在高级数学中,出现了如多边形数这样的概念,表示可以排列成多边形形状的数字。例如,三角形数和平方数是多边形数的特定案例,展示了数学概念之间的相互关联。总之,多边形一词涵盖了一系列对数学和实际应用至关重要的形状。从简单的三角形到计算机图形中的复杂多边形模型,这些形状是我们理解空间关系的基础。无论是在工程、艺术还是数学中,多边形形状的重要性都不容小觑。它们不仅帮助我们理解物理世界,还激发了各个学科的创造力和创新。随着我们继续探索多边形几何学中的广阔可能性,我们开启了新的方式来解释和与我们的环境互动,证明几何确实是宇宙的语言。