isosteric

简明释义

[ˌaɪsəʊˈsterɪk][aɪsɑːsˈterɪk]

adj. (电子)等排的

n. 等比容线

英英释义

Relating to isosteres, which are compounds that have similar molecular shapes and volumes but differ in their chemical properties.

与等体素有关的,指具有相似分子形状和体积但在化学性质上有所不同的化合物。

单词用法

isosteric substitution

等体积取代

isosteric relationship

等体积关系

isosteric analogs

等体积类似物

isosteric series

等体积系列

同义词

isosteric

等体积的

Isosteric relationships are crucial in drug design.

等体积关系在药物设计中至关重要。

isosteric replacement

等体积替换

The concept of isosteric substitutions helps in understanding molecular interactions.

等体积替换的概念有助于理解分子间的相互作用。

反义词

non-isosteric

非等体

The new compound is non-isosteric to the original drug.

新化合物与原药物是非等体的。

dissimilar

不相似

Dissimilar molecules may exhibit different biological activities.

不相似的分子可能表现出不同的生物活性。

例句

1.Estimations of the isosteric enthalpy of adsorption, free energy, and entropy of adsorption are reported and, the adsorption behaviors are reasonably interpreted.

对酚类化合物被两种树脂吸附的吸附焓、自由能、吸附熵也作了测试,并对吸附行为作了合理的解释。

2.The isosteric heats of adsorption were determined from the isotherms and the factors that influence their variations were discussed.

从等温线确定了等量吸附热并讨论了其影响因素。

3.Estimations of the isosteric enthalpy of adsorption, free energy, and entropy of adsorption are reported and, the adsorption behaviors are reasonably interpreted.

对酚类化合物被两种树脂吸附的吸附焓、自由能、吸附熵也作了测试,并对吸附行为作了合理的解释。

4.The team used isosteric 同位素特性 substitutions to enhance binding affinity.

团队使用isosteric 同位素特性替代来增强结合亲和力。

5.The researchers discovered that the new compound had an isosteric 同位素特性 relationship with an existing drug.

研究人员发现新化合物与现有药物具有isosteric 同位素特性关系。

6.Understanding isosteric 同位素特性 relationships is crucial for drug design.

理解isosteric 同位素特性关系对于药物设计至关重要。

7.The isosteric 同位素特性 modifications led to fewer side effects in the clinical trials.

在临床试验中,isosteric 同位素特性的修改导致副作用更少。

8.By replacing certain atoms in the molecule, they created an isosteric 同位素特性 variant that improved efficacy.

通过替换分子中的某些原子,他们创造了一个isosteric 同位素特性变体,从而提高了效力。

作文

In the realm of chemistry and pharmacology, the term isosteric refers to the concept of substituting one atom or group of atoms in a molecule with another that has similar physical or chemical properties. This substitution often leads to compounds that exhibit similar biological activities, yet may differ significantly in their molecular structure. Understanding isosteric relationships is crucial for drug design and development, as it allows scientists to modify existing drugs to improve their efficacy, reduce side effects, or enhance their solubility. For instance, consider the development of analgesics. Researchers may start with a known pain-relieving compound and explore various isosteric modifications to create new derivatives. By replacing certain functional groups with isosteric counterparts, they can retain the desired analgesic properties while potentially altering the drug's metabolism or reducing its toxicity. This strategy not only aids in discovering novel therapeutic agents but also helps in optimizing lead compounds during the drug development process.The significance of isosteric modifications extends beyond just pharmaceuticals; it also plays a vital role in materials science and polymer chemistry. In these fields, scientists often utilize isosteric principles to design new materials with specific properties. For example, by substituting atoms in a polymer backbone with isosteric elements, researchers can influence the material's mechanical strength, thermal stability, or electrical conductivity. This capability to tailor materials at the molecular level opens up new avenues for innovation in various industries, including electronics, automotive, and aerospace.Moreover, the study of isosteric relationships contributes to our understanding of molecular interactions and bonding. When two molecules share isosteric features, they often engage in similar interactions with biological targets such as enzymes or receptors. This knowledge enhances our comprehension of how drugs exert their effects within the body and aids in predicting potential drug-drug interactions.In summary, the concept of isosteric substitutions is a powerful tool in both chemistry and materials science. By leveraging isosteric relationships, scientists can create innovative compounds and materials that meet specific needs in various applications. This understanding not only fosters advancements in drug discovery but also paves the way for the development of new materials with tailored properties. As research continues to evolve, the importance of isosteric principles will undoubtedly remain a cornerstone of scientific inquiry, driving progress across multiple fields. In conclusion, the term isosteric encapsulates a fundamental principle that bridges chemistry, biology, and materials science. Its implications are vast, influencing everything from drug design to the creation of advanced materials. By exploring isosteric substitutions, researchers can unlock new possibilities and enhance our ability to innovate in an ever-changing technological landscape.

在化学和药理学领域,术语isosteric指的是用具有相似物理或化学性质的原子或原子团替代分子中的一个原子或原子团的概念。这种替代通常会导致表现出相似生物活性的化合物,但在分子结构上可能有显著不同。理解isosteric关系对于药物设计和开发至关重要,因为它使科学家能够修改现有药物,以提高其疗效、减少副作用或增强其溶解性。例如,考虑止痛药的开发。研究人员可能从一种已知的止痛化合物开始,探索各种isosteric修饰以创建新的衍生物。通过用isosteric对应物替换某些功能团,他们可以保留所需的止痛特性,同时潜在地改变药物的代谢或减少其毒性。这一策略不仅有助于发现新型治疗剂,还帮助优化药物开发过程中的先导化合物。Isosteric修饰的重要性不仅限于制药;它在材料科学和聚合物化学中也发挥着至关重要的作用。在这些领域,科学家们常常利用isosteric原理来设计具有特定性质的新材料。例如,通过用isosteric元素替换聚合物主链中的原子,研究人员可以影响材料的机械强度、热稳定性或电导率。这种在分子层面上定制材料的能力为各个行业的创新开辟了新途径,包括电子、汽车和航空航天。此外,isosteric关系的研究有助于我们理解分子间的相互作用和结合。当两个分子共享isosteric特征时,它们通常会与生物靶标如酶或受体进行类似的相互作用。这一知识增强了我们对药物在体内如何发挥作用的理解,并有助于预测潜在的药物-药物相互作用。总之,isosteric替代的概念是化学和材料科学中的一种强大工具。通过利用isosteric关系,科学家可以创造出满足各种应用特定需求的创新化合物和材料。这一理解不仅促进了药物发现的进展,也为开发具有定制属性的新材料铺平了道路。随着研究的不断发展,isosteric原理的重要性无疑将继续成为科学探究的基石,推动多个领域的进步。最后,术语isosteric概括了一个连接化学、生物学和材料科学的基本原则。其影响广泛,影响着从药物设计到先进材料的创造。通过探索isosteric替代,研究人员可以解锁新可能性,增强我们在不断变化的技术环境中创新的能力。