magnetic hysteresis
简明释义
磁滞
英英释义
例句
1.In magnetic materials, magnetic hysteresis 磁滞现象 describes how they retain magnetization.
在磁性材料中,磁滞现象 magnetic hysteresis 描述了它们如何保持磁化。
2.The phenomenon of magnetic hysteresis 磁滞现象 is crucial in designing transformers.
在设计变压器时,磁滞现象 magnetic hysteresis 是至关重要的。
3.Engineers must consider magnetic hysteresis 磁滞现象 when selecting materials for inductors.
工程师在选择电感材料时必须考虑磁滞现象 magnetic hysteresis 。
4.The energy loss due to magnetic hysteresis 磁滞现象 can affect the efficiency of electric motors.
由于磁滞现象 magnetic hysteresis 导致的能量损失可能会影响电动机的效率。
5.The loop formed by magnetic hysteresis 磁滞现象 is an important characteristic of ferromagnetic materials.
由磁滞现象 magnetic hysteresis 形成的回路是铁磁材料的重要特性。
作文
Magnetic materials are essential in various technological applications, from electric motors to transformers. One critical phenomenon that affects the performance of these materials is magnetic hysteresis. 磁滞现象 refers to the lag between the magnetization of a material and the applied magnetic field. This concept is crucial for understanding how magnetic materials behave under varying magnetic fields.When a magnetic field is applied to a ferromagnetic material, the domains within the material align with the field, leading to an increase in magnetization. However, when the external magnetic field is removed, the material does not return to its original state immediately. Instead, some magnetization remains due to the alignment of the magnetic domains, which is the essence of magnetic hysteresis. This residual magnetization can be beneficial or detrimental, depending on the application.The magnetic hysteresis loop is a graphical representation of this phenomenon. It illustrates the relationship between the applied magnetic field and the resulting magnetization of the material. The area enclosed by the loop represents the energy loss during one complete cycle of magnetization and demagnetization. This energy loss is significant in applications where efficiency is crucial, such as in transformers and inductors. Therefore, understanding magnetic hysteresis is vital for engineers and designers who work with magnetic materials.In practical terms, magnetic hysteresis can lead to inefficiencies in electrical devices. For instance, in a transformer, if the core material exhibits high hysteresis loss, it will convert more electrical energy into heat rather than usable energy. As a result, selecting materials with low hysteresis loss is essential for improving energy efficiency. Materials like silicon steel are often used in transformer cores because they exhibit lower magnetic hysteresis losses compared to other ferromagnetic materials.Moreover, magnetic hysteresis also plays a role in data storage technologies. Hard drives and magnetic tapes rely on the principle of magnetic hysteresis to store information. The ability to retain a magnetic state even when the external field is removed allows for the long-term storage of data. This characteristic is what makes magnetic materials suitable for memory devices.In conclusion, magnetic hysteresis is a fundamental concept in magnetism that has significant implications for various technological applications. Understanding this phenomenon enables engineers to design more efficient devices and select appropriate materials for specific uses. As technology continues to advance, the importance of managing magnetic hysteresis will only grow, impacting everything from energy consumption to data storage solutions. By mastering the principles behind magnetic hysteresis, we can harness the full potential of magnetic materials in our increasingly technology-driven world.
磁性材料在各种技术应用中至关重要,从电动机到变压器。其中一个影响这些材料性能的关键现象是磁滞现象。磁滞现象指的是材料的磁化与施加的磁场之间的滞后。这一概念对于理解磁性材料在变化的磁场下的行为至关重要。当施加磁场于铁磁材料时,材料内部的磁畴会与磁场对齐,从而导致磁化的增加。然而,当外部磁场被移除时,材料并不会立即恢复到原始状态。相反,由于磁畴的排列,一些磁化仍然存在,这就是磁滞现象的本质。这种残余磁化在某些应用中可能是有益的或有害的,具体取决于应用场景。磁滞现象循环是这一现象的图形表示。它描绘了施加的磁场与材料所产生的磁化之间的关系。循环所围成的面积代表了在一次完整的磁化和去磁过程中能量的损失。这种能量损失在效率至关重要的应用中是显著的,例如变压器和电感。因此,理解磁滞现象对于从事磁性材料工作的工程师和设计师来说至关重要。在实际应用中,磁滞现象可能导致电气设备的低效。例如,在变压器中,如果核心材料表现出高的滞后损失,它将把更多的电能转化为热量,而不是可用的能量。因此,选择低滞后损失的材料对于提高能量效率至关重要。硅钢等材料通常用于变压器核心,因为与其他铁磁材料相比,它们表现出较低的磁滞现象损失。此外,磁滞现象也在数据存储技术中发挥作用。硬盘和磁带依赖于磁滞现象的原理来存储信息。即使在外部磁场移除后,保留磁态的能力使得数据的长期存储成为可能。这一特性使得磁性材料适合用于存储设备。总之,磁滞现象是磁学中的一个基本概念,对各种技术应用具有重要影响。理解这一现象使工程师能够设计更高效的设备,并为特定用途选择合适的材料。随着技术的不断进步,管理磁滞现象的重要性只会增加,影响从能源消耗到数据存储解决方案的方方面面。通过掌握磁滞现象背后的原理,我们可以在日益技术驱动的世界中充分利用磁性材料的潜力。
相关单词