gauss
简明释义
n. [电磁]高斯(磁感应或磁场的单位)
n. (Gauss)人名;(英、德、西)[电磁]高斯
复 数 g a u s s 或 g a u s s e s
英英释义
单词用法
高斯定理 | |
高斯消去法 |
同义词
特斯拉 | 磁场强度以特斯拉为单位测量。 | ||
韦伯 | 一个韦伯等于一个伏特秒。 |
反义词
零 | 在这个点,磁场强度为零。 | ||
零 | A measurement of zero indicates no presence of the quantity. | 零的测量表示该量不存在。 |
例句
1.They and gauss-lobatto collocation points can be utilized to approximate the solution of these problems in this paper.
他们和高斯-罗贝多共位点被用来逼近本本论文中所提及的一些问题。
2.This paper will prove that Gauss curvature method has a very good application prospect in reservoir fractures.
应用结果表明,高斯曲率法是一种预测和评价构造裂缝分布规律的有效方法,具有很好的应用前景。
3.In quadrature elements, variations of material properties are simulated by adopting material parameter of Gauss point.
在积分网格中,取高斯点的材料参数来模拟材料特性的变化。
4.Gauss quadrature and minimum residual displacement method (with iteration) are used in the analysis.
采用高斯积分,利用最小残余位移法进行迭代计算。
5.Gauss Blast no longer USES asteroid for its travel effect.
高斯高炉不再使用小行星的旅游效应。
6.The experimental results obtained by the Gauss laser beam deflection technique well conform with the theory.
采用高斯光束光斑偏折技术所得实验结果与理论很好地符合。
7.Gauss theorem in magnetic field and Ampere cycle theorem, Ampere law, action of magnetic field to current line, cycle and charge in which.
磁场中的高斯定理和安培环路定理;安培定律。磁场对载流导线和载流线圈及对运动电荷的作用。
8.Certain medical imaging techniques utilize magnets that can generate fields up to several thousand gauss 高斯.
某些医学成像技术利用可以产生高达数千gauss 高斯的磁体。
9.A typical refrigerator magnet has a strength of about 50 gauss 高斯.
一个典型的冰箱磁铁的磁强约为50gauss 高斯。
10.The magnetic field strength is measured in gauss 高斯.
磁场强度以gauss 高斯为单位测量。
11.The Earth's magnetic field is approximately 0.5 gauss 高斯 at the surface.
地球表面的磁场约为0.5gauss 高斯。
12.In scientific research, we often deal with fields measured in gauss 高斯.
在科学研究中,我们经常处理以gauss 高斯为单位的场。
作文
In the field of physics and engineering, the term gauss is often encountered. Named after the German mathematician and physicist Carl Friedrich Gauss, this unit of measurement is used to quantify magnetic fields. Understanding the concept of gauss is essential for anyone studying electromagnetism or working with magnetic devices. The gauss is defined as one maxwell per square centimeter. In simpler terms, it measures the strength of a magnetic field at a specific point in space. One gauss can also be thought of as the magnetic flux density that will induce an electromotive force of one volt in a closed loop of wire that encloses an area of one square centimeter when the magnetic field changes at a rate of one weber per second. This definition highlights its importance in applications like magnetic resonance imaging (MRI) and various types of sensors. In practical terms, the Earth's magnetic field is approximately 0.5 gauss, while strong magnets, such as those found in MRI machines, can produce fields exceeding 20,000 gauss. The ability to measure and manipulate magnetic fields is crucial in modern technology, from data storage devices to electric motors. When discussing the relevance of gauss in everyday life, one must consider its impact on various industries. For instance, in the healthcare sector, MRI machines utilize high gauss magnetic fields to create detailed images of the human body. This non-invasive imaging technique has revolutionized diagnostics, allowing doctors to detect abnormalities with great precision. Furthermore, understanding gauss is not limited to professionals in science and engineering. It is also important for students and educators. Many educational institutions incorporate hands-on experiments and demonstrations involving magnets to help students grasp the principles of magnetism. By measuring the strength of different magnets in units of gauss, students learn about the relationship between magnetic fields and physical forces. As technology continues to advance, the significance of gauss will only grow. Researchers are exploring new materials and techniques to create stronger and more efficient magnets. This ongoing exploration could lead to innovations in energy generation, transportation, and even quantum computing. In conclusion, the term gauss is more than just a unit of measurement; it represents a fundamental aspect of our understanding of the physical world. From its historical roots in the work of Carl Friedrich Gauss to its modern applications in healthcare and technology, the concept of gauss is integral to many fields. As we move forward, it is essential to continue exploring the implications of magnetic fields and their measurements, ensuring that we harness their potential for future advancements. By incorporating the knowledge of gauss into our studies and practices, we can better appreciate the intricate workings of the universe and the technologies that shape our lives.
在物理和工程领域,术语gauss常常被提及。这个单位是以德国数学家和物理学家卡尔·弗里德里希·高斯的名字命名,用于量化磁场。理解gauss的概念对于任何学习电磁学或从事磁性设备工作的人来说都是至关重要的。gauss的定义为每平方厘米一个麦克斯韦。在更简单的术语中,它测量特定空间点的磁场强度。一个gauss也可以被认为是当磁场以每秒一个韦伯的速率变化时,在包围一个面积为每平方厘米的闭合导线圈中诱发一个伏特的电动势的磁通密度。这一定义突出了它在磁共振成像(MRI)和各种类型传感器等应用中的重要性。在实际应用中,地球的磁场大约是0.5gauss,而强磁铁,如MRI机器中的磁铁,可以产生超过20,000gauss的磁场。测量和操控磁场的能力对现代技术至关重要,从数据存储设备到电动机。当讨论gauss在日常生活中的相关性时,必须考虑它对各个行业的影响。例如,在医疗行业,MRI机器利用高gauss磁场创建人体的详细图像。这种非侵入性成像技术彻底改变了诊断,使医生能够精确地发现异常。此外,理解gauss不仅限于科学和工程专业人士。它对学生和教育者同样重要。许多教育机构通过涉及磁铁的实践实验和演示,帮助学生掌握磁学原理。通过用gauss单位测量不同磁铁的强度,学生们了解磁场与物理力之间的关系。随着技术的不断进步,gauss的重要性只会增加。研究人员正在探索新材料和技术,以创造更强大、更高效的磁铁。这一持续的探索可能会导致能源生成、运输甚至量子计算等领域的创新。总之,术语gauss不仅仅是一个测量单位;它代表了我们对物理世界理解的一个基本方面。从卡尔·弗里德里希·高斯的历史根源到它在医疗和技术中的现代应用,gauss的概念在许多领域中都是不可或缺的。随着我们向前发展,继续探索磁场及其测量的影响至关重要,确保我们能够利用其潜力推动未来的进步。通过将对gauss的知识融入我们的学习和实践,我们可以更好地欣赏宇宙的复杂运作以及塑造我们生活的技术。