geometric mean diameter
简明释义
几何平均径
英英释义
例句
1.The calculation of the geometric mean diameter 几何平均直径 is essential for understanding the distribution of particle sizes in a sample.
计算几何平均直径 geometric mean diameter 对于理解样本中颗粒大小的分布至关重要。
2.Using the geometric mean diameter 几何平均直径, we can better understand the average size of the droplets in the spray.
使用几何平均直径 geometric mean diameter,我们可以更好地理解喷雾中液滴的平均大小。
3.In fluid dynamics, the geometric mean diameter 几何平均直径 helps in predicting the flow behavior of non-spherical particles.
在流体动力学中,几何平均直径 geometric mean diameter 有助于预测非球形颗粒的流动行为。
4.The geometric mean diameter 几何平均直径 of the aerosol particles was found to be significantly smaller than expected.
气溶胶颗粒的几何平均直径 geometric mean diameter 被发现显著小于预期。
5.To analyze the effectiveness of the filtration system, we measured the geometric mean diameter 几何平均直径 of the contaminants.
为了分析过滤系统的有效性,我们测量了污染物的几何平均直径 geometric mean diameter。
作文
The concept of the geometric mean diameter is crucial in various fields, particularly in engineering, statistics, and environmental science. It provides a means to quantify the average size of a set of values that are multiplicatively related. Unlike the arithmetic mean, which can be skewed by extreme values, the geometric mean diameter offers a more accurate representation when dealing with ratios or percentages. For instance, if we consider a set of numbers representing the diameters of particles in a sample, the geometric mean diameter allows us to understand the central tendency of these sizes in a way that reflects their multiplicative nature.To calculate the geometric mean diameter, one would take the product of all the diameters and then raise it to the power of one divided by the number of observations. This method ensures that the influence of larger or smaller values is minimized, making it particularly useful in scientific research where data can vary significantly. For example, in environmental studies, researchers often measure the size of pollutants or particulates in air or water. Using the geometric mean diameter helps in summarizing the data effectively, providing insights into the overall distribution of particle sizes.In addition to its applications in environmental science, the geometric mean diameter is also widely used in the field of materials science. Engineers often need to assess the properties of composite materials, which may consist of particles of varying sizes. By utilizing the geometric mean diameter, they can predict how these materials will behave under different conditions. This is essential for ensuring the reliability and performance of materials in real-world applications.Moreover, the geometric mean diameter plays a significant role in statistical analysis. In many cases, datasets are not normally distributed, and traditional measures of central tendency may not accurately reflect the data's characteristics. The geometric mean diameter provides an alternative that can be particularly beneficial when analyzing growth rates, financial returns, or any other data that involves multiplicative processes.In conclusion, understanding the geometric mean diameter is vital for professionals in various disciplines. Its ability to provide a more representative average in the presence of skewed data makes it an indispensable tool for researchers and engineers alike. As we continue to explore complex datasets in our increasingly data-driven world, the relevance of the geometric mean diameter will only grow. By incorporating this measure into our analytical toolkit, we can enhance our ability to interpret data accurately and make informed decisions based on the insights gleaned from this powerful statistical concept.
“几何平均直径”是一个在多个领域中至关重要的概念,特别是在工程、统计和环境科学中。它提供了一种量化一组乘法相关值的平均大小的方法。与可能被极端值扭曲的算术平均数不同,“几何平均直径”在处理比率或百分比时提供了更准确的表示。例如,如果我们考虑一组代表样本中颗粒直径的数字,“几何平均直径”使我们能够以反映其乘法特性的方式理解这些大小的集中趋势。计算“几何平均直径”的方法是将所有直径的乘积取出,然后将其提高到观察数量的倒数的幂。这种方法确保了较大或较小值的影响最小化,这在科学研究中尤为有用,因为数据可能会显著变化。例如,在环境研究中,研究人员经常测量空气或水中的污染物或颗粒的大小。使用“几何平均直径”有助于有效总结数据,为颗粒大小的整体分布提供见解。除了在环境科学中的应用外,“几何平均直径”在材料科学领域也被广泛使用。工程师通常需要评估复合材料的性质,这些材料可能由不同大小的颗粒组成。通过利用“几何平均直径”,他们可以预测这些材料在不同条件下的表现。这对于确保材料在现实应用中的可靠性和性能至关重要。此外,“几何平均直径”在统计分析中也发挥着重要作用。在许多情况下,数据集并不是正态分布的,传统的集中趋势度量可能无法准确反映数据的特征。“几何平均直径”提供了一种替代方案,对于分析增长率、财务回报或任何涉及乘法过程的数据特别有益。总之,理解“几何平均直径”对各个学科的专业人士至关重要。它在数据偏斜的情况下提供更具代表性的平均值的能力,使其成为研究人员和工程师不可或缺的工具。随着我们在日益数据驱动的世界中继续探索复杂的数据集,“几何平均直径”的相关性只会增加。通过将这一度量纳入我们的分析工具包,我们可以增强准确解释数据的能力,并根据从这一强大统计概念中获得的见解做出明智的决策。
相关单词