intuitionism

简明释义

[ˌɪntjʊˈɪʃəˌnɪzəm][ˌɪntuˈɪʃənɪzəm]

n. 直观论;直觉说

英英释义

A philosophical theory that emphasizes the role of intuition in the acquisition of knowledge, particularly in moral and mathematical contexts.

一种哲学理论,强调直觉在知识获取中的作用,特别是在道德和数学的背景下。

单词用法

intuitionistic logic

直觉主义逻辑

intuitionistic mathematics

直觉主义数学

support intuitionism

支持直觉主义

reject intuitionism

拒绝直觉主义

同义词

intuitive knowledge

直觉知识

Her intuitive knowledge of the subject helped her excel in the exam.

她对这个主题的直觉知识帮助她在考试中表现出色。

instinctive understanding

本能理解

He had an instinctive understanding of people's emotions.

他对人们情感有一种本能的理解。

immediate insight

直接洞察

The artist's immediate insight into human nature is reflected in his work.

这位艺术家对人性的直接洞察体现在他的作品中。

反义词

empiricism

经验主义

Empiricism emphasizes knowledge derived from sensory experience.

经验主义强调从感官经验中获得知识。

rationalism

理性主义

Rationalism argues that reason and logic are the primary sources of knowledge.

理性主义认为理性和逻辑是知识的主要来源。

例句

1.Composition and composition teaching can't depart from intuition. But if we exaggerate the acting force of experience and sudden inspiration, we'll fall into the marshland of intuitionism.

作文和作文教学离不开直觉,但如果一味地夸大经验、灵感的作用,就会陷入直觉主义的泥潭。

2.The most significant contribution of his intuitionism is that it changed human thinking habits and set free human creative spirit.

其直觉论的最重要意义是扭转人们思维的习惯方向,从而解放人的创造精神。

3.Composition and composition teaching can't depart from intuition. But if we exaggerate the acting force of experience and sudden inspiration, we'll fall into the marshland of intuitionism.

作文和作文教学离不开直觉,但如果一味地夸大经验、灵感的作用,就会陷入直觉主义的泥潭。

4.The narrative logic under the conciousness of intuitionismGenerally speaking, intuitionism and rationalism conflict with each other.

直觉主义创作意识下的叙事逻辑性一般地说,直觉主义与理性主义是相对立的。

5.Shopenhaver (1788 ~ 1860), German philosopher, the founder of the theory of "will to live" and art theory of intuitionism.

叔本华(1788—1860),德国哲学家、唯意志论者和直觉主义艺术理论的创始人。

6.I contend that even constructivism cannot avoid intuitionism to pave the basic bedrocks for just principles.

我主张,如果没有直觉主义的话,结构主义不能为正义原则提供基础。

7.We can see that Pound's poetry had been influenced by Henri Bergson's Intuitionism, the late Symbolism in France, the ancient Greek culture and Oriental culture.

庞德诗歌创作接受了西方柏格森等人的直觉主义、法国后期的象征主义。古希腊文化以及东方文化的多方面影响。

8.After all, Sidgwick left the dualism of practical reason for us. He failed to put utilitarianism and egoism together, although he succeeded in unifying intuitionism and utilitarianism.

西季威克调和了直觉主义和功利主义,却无法调和功利主义和利己主义,留下了著名的实践理性二元论。

9.In mathematics, intuitionism emphasizes the importance of constructive proofs.

在数学中,直觉主义强调构造性证明的重要性。

10.In educational settings, intuitionism encourages students to trust their instincts.

在教育环境中,直觉主义鼓励学生相信自己的直觉。

11.Critics of intuitionism argue that it lacks a solid foundation in formal logic.

直觉主义的批评者认为它缺乏坚实的形式逻辑基础。

12.The principles of intuitionism can be applied to ethical decision-making.

直觉主义的原则可以应用于伦理决策中。

13.Many philosophers debate the merits of intuitionism compared to classical logic.

许多哲学家争论与经典逻辑相比,直觉主义的优点。

作文

In the realm of philosophy and mathematics, one intriguing concept is intuitionism, which is a theory that emphasizes the role of mental constructions in understanding mathematical truths. This approach diverges from classical views, suggesting that mathematical objects do not exist independently of our knowledge and intuition about them. Intuitionism asserts that mathematics is a creation of the human mind, and its truths are discovered through intuition rather than through logical deduction or empirical observation.At its core, intuitionism challenges the notion of mathematical realism, which posits that mathematical entities exist in an abstract realm waiting to be uncovered. Instead, proponents of intuitionism, such as L.E.J. Brouwer, argue that numbers and other mathematical constructs are meaningful only in the context of our mental activities. This perspective leads to a more subjective understanding of mathematics, where the validity of a mathematical statement hinges on our ability to construct it mentally.One of the key implications of intuitionism is its stance on the law of excluded middle, a fundamental principle in classical logic that states every proposition must either be true or false. In contrast, intuitionists reject this principle when it comes to statements about infinite sets or non-constructive proofs. They argue that if we cannot provide a direct method to construct a mathematical object, we cannot claim its existence. This rejection of non-constructive proofs has significant consequences for the foundations of mathematics, leading to a more cautious approach in mathematical reasoning.The philosophical implications of intuitionism extend beyond pure mathematics. It invites us to reconsider how we perceive knowledge and truth in various fields. For instance, in the sciences, the reliance on empirical data and observable phenomena can be viewed through the lens of intuitionism. If we accept that our understanding is shaped by our mental constructs, we may become more aware of the limitations of our observations and the theories we develop based on them.Moreover, intuitionism has influenced educational practices in mathematics. By focusing on the development of intuitive understanding rather than rote memorization of formulas and theorems, educators can foster a deeper appreciation for the subject. This approach encourages students to engage with mathematical concepts actively, allowing them to construct their own understanding rather than passively receiving information.In conclusion, intuitionism presents a fascinating perspective on the nature of mathematics and knowledge. By emphasizing the importance of intuition and mental construction, it challenges traditional views and encourages a more subjective understanding of mathematical truths. This philosophical stance not only impacts the foundations of mathematics but also influences how we approach learning and understanding in various disciplines. As we continue to explore the implications of intuitionism, we may find new ways to appreciate the intricate relationship between our minds and the abstract worlds we seek to understand.

在哲学和数学领域,有一个引人入胜的概念是直觉主义,它是一种强调心理构造在理解数学真理中的作用的理论。这种方法与经典观点有所不同,表明数学对象并不独立于我们对它们的知识和直觉而存在。直觉主义主张数学是人类心智的创造,其真理是通过直觉而不是通过逻辑推理或经验观察发现的。从本质上讲,直觉主义挑战了数学现实主义的观念,后者认为数学实体存在于一个抽象领域中,等待被揭示。相反,直觉主义的支持者如L.E.J.布劳威尔认为,数字和其他数学构造只有在我们的心理活动的背景下才有意义。这种观点导致对数学的更主观的理解,其中数学陈述的有效性取决于我们能够在心理上构造它。直觉主义的一个关键含义是它对排中律的立场,这是经典逻辑中的一个基本原则,指出每个命题必须是真或假。相反,直觉主义者在涉及无限集合或非构造性证明时拒绝这一原则。他们认为,如果我们无法提供直接的方法来构造一个数学对象,我们就不能声称它的存在。这种对非构造性证明的拒绝对数学基础产生了重大影响,导致在数学推理中采取更谨慎的态度。直觉主义的哲学意义超出了纯数学的范畴。它邀请我们重新考虑在各个领域中如何看待知识和真理。例如,在科学中,对经验数据和可观察现象的依赖可以通过直觉主义的视角来看待。如果我们接受我们的理解是由我们的心理构造所塑造的,我们可能会更加意识到我们观察的局限性以及我们基于这些观察所发展的理论。此外,直觉主义还影响了数学教育实践。通过专注于直观理解的发展,而不是公式和定理的死记硬背,教育工作者可以培养学生对这一学科的更深刻的欣赏。这种方法鼓励学生积极参与数学概念,使他们能够构建自己的理解,而不是被动接收信息。总之,直觉主义为数学和知识的本质提供了一个迷人的视角。通过强调直觉和心理构造的重要性,它挑战了传统观点,并鼓励对数学真理的更主观理解。这种哲学立场不仅影响数学的基础,还影响我们在各个学科中学习和理解的方式。随着我们继续探索直觉主义的影响,我们可能会发现新的方法来欣赏我们心灵与我们寻求理解的抽象世界之间错综复杂的关系。