astrochemistry
简明释义
英[ˌæstrəʊˈkemɪstri]美[ˌæstroˈkemɪstri]
n. [天] 天体化学;太空化学
英英释义
Astrochemistry is the branch of chemistry that studies the chemical compositions and processes occurring in celestial bodies and the interstellar medium. | 天体化学是研究天体及星际介质中发生的化学成分和过程的化学分支。 |
单词用法
天体化学过程 | |
天体化学反应 | |
天体化学领域 | |
天体化学的发现 |
同义词
反义词
地球化学 | Terrestrial chemistry studies chemical processes occurring on Earth. | 地球化学研究发生在地球上的化学过程。 | |
地球化学 | Geochemistry analyzes the distribution of chemical elements in Earth's crust. | 地球化学分析地壳中化学元素的分布。 |
例句
1.This is the website of the Astrochemistry Laboratory.
这是天体化学实验室的网站。
2.The study of chemicals found in space, including their formation, interaction and destruction, is called Astrochemistry.
这项研究的化学品中发现的空间,包括它们的形成,互动和破坏,被称为。
3.The study of chemicals found in space, including their formation, interaction and destruction, is called Astrochemistry.
这项研究的化学品中发现的空间,包括它们的形成,互动和破坏,被称为。
4.Researchers in astrochemistry analyze molecules found in interstellar space.
从事天体化学的研究人员分析在星际空间中发现的分子。
5.Understanding astrochemistry helps us learn about the origins of life on Earth.
理解天体化学有助于我们了解地球生命的起源。
6.The field of astrochemistry studies the chemical compositions of celestial bodies.
天体化学领域研究天体的化学成分。
7.The discovery of complex organic molecules in space is a significant achievement in astrochemistry.
在太空中发现复杂有机分子是天体化学的重要成就。
8.Students studying astrochemistry often use spectroscopy to identify substances in space.
学习天体化学的学生通常使用光谱法来识别太空中的物质。
作文
Astrochemistry is a fascinating field that sits at the intersection of astronomy and chemistry. It involves the study of the chemical compositions and reactions that occur in space, particularly in celestial bodies such as stars, planets, and interstellar clouds. As our understanding of the universe expands, so does the significance of astrochemistry (天体化学) in unraveling the mysteries of cosmic phenomena.One of the primary goals of astrochemistry (天体化学) is to understand the molecular building blocks of the universe. For example, scientists have discovered complex organic molecules in the atmospheres of distant planets and in the icy comets that travel through our solar system. These discoveries suggest that the ingredients for life may be more widespread than previously thought. By analyzing the chemical signatures of these molecules, researchers can gain insights into the processes that led to their formation and the conditions necessary for life to exist elsewhere in the universe.Moreover, astrochemistry (天体化学) plays a crucial role in the study of star formation. The dense clouds of gas and dust that give birth to stars are rich in various chemical compounds. Understanding how these compounds interact under extreme conditions can help astronomers determine how stars evolve and how they influence their surrounding environments. For instance, the presence of certain molecules can indicate the temperature and density of a star-forming region, providing valuable information about the lifecycle of stars.The study of astrochemistry (天体化学) also extends to the exploration of planetary atmospheres. Missions to Mars, Venus, and the outer planets have revealed a wealth of data about their chemical compositions. By analyzing the atmospheres of these planets, scientists can assess their potential for supporting life and understand the processes that shape their climates. For example, the detection of methane on Mars raises intriguing questions about its origin—whether it is produced by geological processes or possibly by microbial life.In addition to planets and stars, astrochemistry (天体化学) is essential for understanding the evolution of galaxies. The chemical elements produced in the cores of stars are released into space when those stars die, enriching the interstellar medium with new materials. This process contributes to the formation of new stars and planets, creating a dynamic cycle of cosmic evolution. By studying the distribution of elements across different galaxies, astronomers can trace the history of star formation and the chemical evolution of the universe.Overall, astrochemistry (天体化学) is a vital area of research that enhances our comprehension of the universe. It bridges the gap between chemistry and astronomy, allowing us to explore the origins of elements, the potential for life beyond Earth, and the intricate processes that govern the cosmos. As technology advances and we develop more sophisticated instruments for observing distant celestial objects, the field of astrochemistry (天体化学) will undoubtedly continue to reveal new and exciting discoveries, deepening our understanding of the universe and our place within it.
天体化学是一个迷人的领域,它位于天文学和化学的交汇处。它涉及对在太空中发生的化学成分和反应的研究,特别是在恒星、行星和星际云等天体中。随着我们对宇宙理解的扩展,astrochemistry(天体化学)的重要性也在不断增加,有助于揭示宇宙现象的奥秘。astrochemistry(天体化学)的主要目标之一是理解宇宙的分子构建块。例如,科学家们在遥远行星的大气层和穿越我们太阳系的冰彗星中发现了复杂的有机分子。这些发现表明,生命的成分可能比以前认为的更为广泛。通过分析这些分子的化学特征,研究人员可以深入了解导致它们形成的过程以及在宇宙其他地方生命存在所需的条件。此外,astrochemistry(天体化学)在恒星形成研究中起着至关重要的作用。孕育恒星的致密气体和尘埃云富含各种化合物。理解这些化合物在极端条件下如何相互作用,可以帮助天文学家确定恒星的演变方式以及它们如何影响周围环境。例如,某些分子的存在可以指示恒星形成区域的温度和密度,从而提供有关恒星生命周期的宝贵信息。astrochemistry(天体化学)的研究还扩展到行星大气的探索。对火星、金星和外行星的任务揭示了关于其化学成分的丰富数据。通过分析这些行星的大气,科学家可以评估它们支持生命的潜力,并理解塑造其气候的过程。例如,在火星上检测到甲烷引发了关于其来源的令人着迷的问题——它是由地质过程产生的,还是可能由微生物生命产生的。除了行星和恒星,astrochemistry(天体化学)对于理解银河系的演化也至关重要。在恒星核心中产生的化学元素在恒星死亡时释放到太空中,丰富了星际介质,带来了新的材料。这个过程促进了新恒星和行星的形成,创造了宇宙演化的动态循环。通过研究不同银河系中元素的分布,天文学家可以追踪恒星形成的历史以及宇宙的化学演化。总体而言,astrochemistry(天体化学)是一个重要的研究领域,增强了我们对宇宙的理解。它弥合了化学与天文学之间的差距,使我们能够探索元素的起源、地球以外生命的潜力,以及支配宇宙的复杂过程。随着技术的进步,我们开发出更先进的仪器来观察遥远的天体,astrochemistry(天体化学)这一领域无疑将继续揭示新的激动人心的发现,加深我们对宇宙及我们在其中位置的理解。