space group

简明释义

空间群

英英释义

A space group is a mathematical concept in crystallography that describes the symmetrical properties of a crystal structure, including its translational and rotational symmetries.

空间群是晶体学中的一个数学概念,描述了晶体结构的对称性质,包括其平移对称性和旋转对称性。

例句

1.In crystallography, each space group represents a unique symmetry.

在晶体学中,每个空间群代表一种独特的对称性。

2.To determine the space group, we need to analyze the diffraction patterns.

为了确定空间群,我们需要分析衍射图案。

3.The space group of the mineral was identified as Pnma.

该矿物的空间群被确定为Pnma。

4.Different space groups can lead to different physical properties in materials.

不同的空间群可能导致材料具有不同的物理性质。

5.The crystal structure can be classified according to its space group.

晶体结构可以根据其空间群进行分类。

作文

In the field of crystallography, the term space group refers to a mathematical classification that describes the symmetries of a crystal structure. A space group encompasses all the possible symmetrical operations that can be performed on a crystal lattice, including translations, rotations, reflections, and glide reflections. Understanding space groups is crucial for scientists and researchers who study the properties of crystals, as these symmetries can significantly influence the physical characteristics of the material. Crystals are not merely random arrangements of atoms; they exhibit a high degree of order and symmetry. Each crystal can be classified into one of 230 unique space groups, which are derived from the combination of the seven crystal systems and their respective symmetry elements. This classification allows researchers to predict how a crystal will behave under various conditions, such as temperature changes or mechanical stress. For instance, consider the importance of space groups in the development of new materials. When designing a new semiconductor or superconductor, understanding the space group of the material can help scientists tailor its electronic properties. Different space groups can lead to different band structures, which in turn affect how electrons move through the material. Additionally, the concept of space groups is not limited to solid-state physics. In the field of molecular biology, the arrangement of molecules in a crystal can also be described using space groups. For example, when determining the structure of proteins through X-ray crystallography, knowing the space group is essential for accurately interpreting the diffraction patterns obtained during experiments. The determination of a crystal's space group involves a series of steps, starting with the identification of the unit cell parameters. The unit cell is the smallest repeating unit of the crystal lattice, and its dimensions and angles provide essential information about the crystal’s symmetry. Once the unit cell is established, researchers can apply systematic procedures to identify the space group by analyzing the symmetry elements present in the crystal. Moreover, software tools have been developed to assist scientists in determining space groups from experimental data. These tools use algorithms to analyze diffraction patterns and suggest the most probable space group based on the observed symmetries. This computational approach has revolutionized the field, making it easier and faster to characterize complex crystal structures. In conclusion, the concept of space groups is fundamental in the study of crystallography and material science. It provides a framework for understanding the symmetrical properties of crystals, which are vital for predicting their behavior and applications. As research continues to advance, the role of space groups will remain significant in the development of new materials and the exploration of molecular structures. By mastering the principles surrounding space groups, scientists can unlock new possibilities in both theoretical and applied sciences.

在晶体学领域,术语空间群指的是描述晶体结构对称性的数学分类。空间群包含了可以对晶体晶格执行的所有可能的对称操作,包括平移、旋转、反射和滑模反射。理解空间群对于研究晶体特性的科学家和研究人员至关重要,因为这些对称性会显著影响材料的物理特性。晶体并不是任意原子排列的随机组合;它们表现出高度的有序性和对称性。每种晶体都可以被归类为230种独特的空间群之一,这些分类是由七种晶体系统及其各自的对称元素组合而成的。这种分类允许研究人员预测晶体在各种条件下的行为,例如温度变化或机械应力。例如,考虑到空间群在新材料开发中的重要性。当设计新的半导体或超导体时,了解材料的空间群可以帮助科学家调整其电子特性。不同的空间群可能导致不同的能带结构,而这又会影响电子在材料中的运动。此外,空间群的概念不仅限于固态物理。在分子生物学领域,分子在晶体中的排列也可以用空间群来描述。例如,在通过X射线晶体学确定蛋白质结构时,了解空间群对于准确解释实验中获得的衍射图样至关重要。确定晶体的空间群涉及一系列步骤,首先是识别晶胞参数。晶胞是晶体晶格的最小重复单元,其尺寸和角度提供了关于晶体对称性的基本信息。一旦建立了晶胞,研究人员可以应用系统程序来通过分析晶体中存在的对称元素来识别空间群。此外,已经开发出软件工具来帮助科学家从实验数据中确定空间群。这些工具使用算法来分析衍射图样,并根据观察到的对称性建议最可能的空间群。这种计算方法彻底改变了该领域,使得表征复杂晶体结构变得更加容易和快速。总之,空间群的概念在晶体学和材料科学的研究中是基础性的。它提供了一个框架,用于理解晶体的对称属性,这对于预测其行为和应用至关重要。随着研究的不断推进,空间群在新材料开发和分子结构探索中的作用将保持重要性。通过掌握围绕空间群的原则,科学家可以在理论和应用科学中解锁新的可能性。

相关单词

space

space详解:怎么读、什么意思、用法