rotating crystal method

简明释义

旋转晶体法

英英释义

The rotating crystal method is a technique used in crystallography to study the properties of crystals by rotating them in a controlled manner, allowing for the analysis of their diffraction patterns and other characteristics.

旋转晶体法是一种在晶体学中使用的技术,通过以受控方式旋转晶体来研究其性质,从而分析其衍射图案和其他特征。

例句

1.Using the rotating crystal method, we can study the phase transitions in materials.

通过使用旋转晶体法,我们可以研究材料中的相变。

2.The rotating crystal method allows us to analyze the symmetry of the crystal lattice.

旋转晶体法使我们能够分析晶体晶格的对称性。

3.In our lab, we apply the rotating crystal method for precise measurements of crystal structures.

在我们的实验室中,我们应用旋转晶体法进行精确的晶体结构测量。

4.Researchers found that the rotating crystal method enhances the resolution of diffraction patterns.

研究人员发现旋转晶体法提高了衍射图样的分辨率。

5.The rotating crystal method is used to determine the optical properties of materials.

使用旋转晶体法来确定材料的光学特性。

作文

The field of crystallography has always fascinated scientists and researchers due to its profound implications in various domains such as materials science, chemistry, and physics. Among the numerous techniques used for studying crystalline structures, the rotating crystal method stands out as a particularly innovative approach. This method involves the systematic rotation of a crystal in relation to an incident beam of X-rays or other forms of radiation to gather comprehensive data about the crystal's internal structure. By analyzing the diffraction patterns produced during this rotation, researchers can derive critical information about the arrangement of atoms within the crystal lattice.One of the primary advantages of the rotating crystal method is its ability to provide detailed and accurate measurements of the crystal's orientation. The technique allows for the collection of multiple diffraction images at various angles, which can then be combined to create a three-dimensional representation of the crystal structure. This three-dimensional data is invaluable in understanding the properties of materials, including their strength, conductivity, and optical characteristics.In practice, the rotating crystal method requires a sophisticated setup that includes a high-resolution X-ray source, a precise rotation mechanism, and advanced detection systems. The crystal is mounted on a goniometer, which allows for accurate control of its orientation during the experiment. As the crystal rotates, the incident X-rays interact with its atoms, producing a unique diffraction pattern that is captured by detectors positioned around the sample. Each position of the crystal corresponds to a different angle of incidence, enabling the collection of a comprehensive dataset.The data obtained from the rotating crystal method can be processed using various computational algorithms, allowing researchers to refine their models of the crystal structure. This process often involves complex mathematical techniques such as Fourier transforms and least-squares fitting. The end result is a detailed atomic model that reveals not only the positions of the atoms but also their thermal vibrations and interactions with neighboring atoms.Moreover, the rotating crystal method has significant applications in the pharmaceutical industry, where it is used to determine the structures of drug compounds. Understanding the precise arrangement of atoms in a drug molecule can lead to insights into its efficacy and potential side effects. Additionally, this method is crucial in the development of new materials with tailored properties, such as superconductors and nanomaterials.Despite its advantages, the rotating crystal method is not without challenges. The quality of the crystal is paramount; imperfections or impurities can lead to erroneous results. Furthermore, the technique requires significant expertise and resources, making it less accessible compared to other crystallographic methods such as powder diffraction.In conclusion, the rotating crystal method represents a powerful tool in the study of crystallography, offering detailed insights into the atomic structure of materials. Its applications span various fields, from materials science to pharmaceuticals, highlighting its importance in advancing scientific knowledge and technological innovation. As research continues to evolve, the rotating crystal method will undoubtedly play a crucial role in uncovering the mysteries of crystalline materials and their applications in our everyday lives.

晶体学领域一直以来都吸引着科学家和研究人员,因为它在材料科学、化学和物理等多个领域具有深远的影响。在众多用于研究晶体结构的技术中,旋转晶体法作为一种特别创新的方法脱颖而出。该方法涉及系统地旋转晶体与入射的X射线或其他形式辐射之间的关系,以收集有关晶体内部结构的全面数据。通过分析在这一旋转过程中产生的衍射模式,研究人员可以推导出关于晶体晶格内原子排列的重要信息。旋转晶体法的主要优点之一是能够提供晶体取向的详细和准确的测量。该技术允许在不同角度下收集多个衍射图像,这些图像可以结合起来创建晶体结构的三维表示。这种三维数据对理解材料的性质至关重要,包括它们的强度、导电性和光学特性。在实践中,旋转晶体法需要一个复杂的设置,包括高分辨率的X射线源、精确的旋转机制和先进的检测系统。晶体被安装在一个测角器上,该装置允许在实验过程中准确控制其取向。当晶体旋转时,入射的X射线与其原子相互作用,产生独特的衍射模式,这些模式由位于样品周围的探测器捕获。晶体的每个位置对应于不同的入射角,从而使得可以收集到全面的数据集。从旋转晶体法获得的数据可以使用各种计算算法进行处理,使研究人员能够优化他们的晶体结构模型。这个过程通常涉及复杂的数学技术,如傅里叶变换和最小二乘拟合。最终结果是一个详细的原子模型,不仅揭示了原子的位置信息,还显示了它们的热振动和与邻近原子的相互作用。此外,旋转晶体法在制药行业中具有重要应用,用于确定药物化合物的结构。了解药物分子中原子的精确排列可以提供对其有效性和潜在副作用的见解。此外,该方法在开发具有定制特性的材料(如超导体和纳米材料)中至关重要。尽管有其优点,旋转晶体法也面临着挑战。晶体的质量至关重要;缺陷或杂质可能导致错误的结果。此外,该技术需要显著的专业知识和资源,使其相比其他晶体学方法(如粉末衍射)不那么容易获得。总之,旋转晶体法代表了研究晶体学的一种强大工具,提供了对材料原子结构的详细见解。它的应用跨越多个领域,从材料科学到制药,突显了它在推动科学知识和技术创新方面的重要性。随着研究的不断发展,旋转晶体法无疑将在揭示晶体材料及其在我们日常生活中的应用的奥秘中发挥关键作用。

相关单词

rotating

rotating详解:怎么读、什么意思、用法

crystal

crystal详解:怎么读、什么意思、用法