semimetal
简明释义
n. 半金属,准金属
英英释义
单词用法
半金属性 | |
半金属行为 | |
半金属的特性 | |
半金属的例子 | |
半金属的导电性 | |
半金属化合物 | |
半金属的能带结构 | |
半金属的应用 |
同义词
类金属 | 硅是一种常用的类金属,广泛应用于电子产品中。 | ||
半导体 | Gallium arsenide is a semiconductor often used in laser diodes. | 砷化镓是一种常用于激光二极管的半导体材料。 |
反义词
金属 | 金属是良好的电导体。 | ||
非金属 | 非金属的熔点通常低于金属。 |
例句
1.The semimetal ceramic matrix brake pad prepared in the invention is safe and reliable, and the manufacturing method is simple and reliable.
本发明是一种安全性和可靠性高的半金属陶瓷基汽车刹车片,其制备方法简单可靠。
2.The automobile brake pad is a semimetal ceramic base automobile brake pad with high safety and reliability, and a preparation method is simple and reliable.
本发明是一种安全性和可靠性高的半金属陶瓷基汽车刹车片,其制备方法简单可靠。
3.The automobile brake pad is a semimetal ceramic base automobile brake pad with high safety and reliability, and a preparation method is simple and reliable.
本发明是一种安全性和可靠性高的半金属陶瓷基汽车刹车片,其制备方法简单可靠。
4.Some researchers are exploring the use of semimetals 半金属 in new types of batteries.
一些研究人员正在探索在新型电池中使用<semimetals>半金属semimetal>。
5.The unique properties of semimetals 半金属 make them useful in various electronic applications.
由于<semimetals>半金属semimetal>的独特性质,它们在各种电子应用中非常有用。
6.Graphite is often classified as a semimetal 半金属 due to its unique electrical conductivity.
石墨常被归类为<semimetal>半金属semimetal>,这是因为它独特的电导性。
7.In semiconductor physics, a semimetal 半金属 can behave like a conductor under certain conditions.
在半导体物理中,<semimetal>半金属semimetal>在特定条件下可以表现得像导体。
8.Bismuth is an example of a semimetal 半金属 that has interesting thermoelectric properties.
铋是一个具有有趣热电特性的<semimetal>半金属semimetal>的例子。
作文
The term semimetal refers to a category of elements that exhibit properties intermediate between those of metals and non-metals. These materials possess unique characteristics that make them particularly interesting in various fields, including electronics, optics, and materials science. Understanding semimetals is crucial for both academic research and industrial applications. One of the most well-known examples of a semimetal is arsenic, which is often used in the semiconductor industry. Arsenic can conduct electricity under certain conditions, but it does not have the same level of conductivity as metals like copper or silver. This property makes semimetals valuable in the development of electronic components, such as transistors and diodes, which are essential for modern technology. Another notable semimetal is antimony, which has been utilized in flame retardants and lead-acid batteries. The unique electrical properties of semimetals allow for their use in a variety of applications that require specific conductivity levels. For instance, in thermoelectric devices, semimetals can convert temperature differences into electrical voltage, showcasing their versatility. In contrast to metals, semimetals tend to have higher ionization energies and electronegativities, which means they do not easily lose electrons. This characteristic can lead to interesting chemical behaviors, making semimetals useful in catalysis and other chemical processes. Researchers are continuously exploring new semimetals and their potential applications, particularly in the development of new materials that can improve energy efficiency and sustainability. The study of semimetals also has implications for understanding the fundamental principles of solid-state physics. Their unique band structures allow for the exploration of quantum phenomena, which can lead to advancements in quantum computing and nanotechnology. As scientists delve deeper into the world of semimetals, they uncover new possibilities for innovative technologies that could transform our lives. Moreover, the environmental impact of semimetals is an area of growing concern. As industries increasingly rely on these materials, it is essential to consider their lifecycle and the potential consequences of mining and processing. Sustainable practices must be implemented to minimize harm to the environment while maximizing the benefits of semimetals. In conclusion, semimetals represent a fascinating intersection of metal and non-metal characteristics, making them invaluable in various scientific and industrial applications. Their unique properties not only contribute to advancements in technology but also pose challenges that require careful consideration. As we continue to explore the potential of semimetals, we must balance innovation with responsibility to ensure a sustainable future for generations to come.
术语semimetal指的是一类元素,它们展现出介于金属和非金属之间的特性。这些材料具有独特的特性,使其在电子学、光学和材料科学等多个领域特别有趣。理解semimetals对学术研究和工业应用都至关重要。一个众所周知的semimetal例子是砷,通常用于半导体行业。砷在某些条件下可以导电,但其导电性不及铜或银等金属。这一特性使得semimetals在电子元件的发展中具有价值,例如晶体管和二极管,这些都是现代技术的基础。另一个显著的semimetal是锑,已被用于阻燃剂和铅酸电池。semimetals的独特电气特性使它们可用于各种需要特定导电水平的应用。例如,在热电设备中,semimetals可以将温差转化为电压,展示了它们的多功能性。与金属相比,semimetals往往具有更高的电离能和电负性,这意味着它们不易失去电子。这一特性可能导致有趣的化学行为,使得semimetals在催化和其他化学过程中非常有用。研究人员不断探索新的semimetals及其潜在应用,特别是在开发能够提高能源效率和可持续性的材料方面。对semimetals的研究也对理解固态物理的基本原理具有重要意义。它们独特的能带结构允许探索量子现象,这可能导致量子计算和纳米技术的进步。随着科学家深入探索semimetals的世界,他们发现了新技术的可能性,这些技术可能会改变我们的生活。此外,semimetals的环境影响是一个日益关注的领域。随着工业越来越依赖这些材料,考虑它们的生命周期及采矿和加工的潜在后果至关重要。必须实施可持续实践,以最小化对环境的伤害,同时最大化semimetals的好处。总之,semimetals代表了金属与非金属特性的迷人交汇,使其在各种科学和工业应用中不可或缺。它们的独特性质不仅有助于技术的进步,还带来了需要认真考虑的挑战。在我们继续探索semimetals的潜力时,必须在创新与责任之间取得平衡,以确保为未来几代人创造可持续的未来。