relative error
简明释义
相对误差
英英释义
Relative error is the measure of the uncertainty of a measurement compared to the size of the measurement itself, often expressed as a percentage. | 相对误差是对测量的不确定性与测量本身大小的比较,通常以百分比形式表示。 |
例句
1.The relative error 相对误差 in the temperature readings was found to be less than 1%.
温度读数中的 relative error 相对误差 被发现小于1%。
2.In scientific experiments, it’s crucial to minimize the relative error 相对误差 to ensure accurate results.
在科学实验中,最小化 relative error 相对误差 是确保结果准确的关键。
3.The relative error 相对误差 in the final report was highlighted as a significant factor affecting the analysis.
最终报告中的 relative error 相对误差 被强调为影响分析的重要因素。
4.To improve the accuracy of the results, we need to calculate the relative error 相对误差 for each measurement.
为了提高结果的准确性,我们需要计算每个测量的 relative error 相对误差。
5.The measurement of the length of the table had a relative error 相对误差 of 2%, which is acceptable for our purposes.
桌子的长度测量有一个 relative error 相对误差 为2%,这对于我们的目的来说是可以接受的。
作文
In the field of science and engineering, accuracy is paramount. One way to assess the accuracy of measurements or calculations is through the concept of relative error. The relative error is a measure of the uncertainty of a measurement compared to the size of the measurement itself. It is expressed as a fraction or percentage of the true value, providing insight into how significant the error is in relation to the actual quantity being measured. Understanding relative error is crucial for scientists and engineers because it helps them evaluate the reliability of their results and make informed decisions based on those results.To illustrate this concept, consider a simple example. Suppose a scientist measures the length of a metal rod and finds it to be 10.2 cm, but the actual length is known to be 10.0 cm. The absolute error in this measurement can be calculated by subtracting the true value from the measured value: 10.2 cm - 10.0 cm = 0.2 cm. However, to understand how significant this error is, we need to calculate the relative error. This is done by dividing the absolute error by the true value: 0.2 cm / 10.0 cm = 0.02. To express this as a percentage, we multiply by 100, resulting in a relative error of 2%. This means that the error in the measurement is 2% of the true value, which provides a clearer picture of the accuracy of the measurement.The significance of relative error becomes even more apparent when comparing different measurements. For instance, if another rod is measured at 20.1 cm with a true length of 20.0 cm, the absolute error would be 0.1 cm, leading to a relative error of 0.1 cm / 20.0 cm = 0.005, or 0.5%. Although the absolute error of this second measurement is smaller than that of the first, the relative error is actually lower, indicating that the second measurement is more accurate relative to its true value.In practical applications, relative error helps engineers and scientists to determine the precision of their instruments and methods. For example, if a measuring device consistently yields a high relative error, it may indicate that the device needs calibration or replacement. Moreover, when conducting experiments, researchers often aim to minimize relative error to ensure that their findings are valid and reliable.In conclusion, the concept of relative error is essential for anyone working with measurements in scientific and engineering contexts. By quantifying the error in relation to the true value, relative error provides a more meaningful understanding of accuracy than absolute error alone. This understanding enables better decision-making and enhances the reliability of results in various fields. As technology advances and measurements become more precise, the importance of understanding and managing relative error will only continue to grow, making it a fundamental concept in the pursuit of knowledge and innovation.
在科学和工程领域,准确性至关重要。评估测量或计算的准确性的一种方法是通过“相对误差”的概念。“相对误差”是对测量不确定性与测量值大小之比的衡量。它以真实值的分数或百分比形式表示,提供了错误相对于被测量实际数量的重要性洞察。理解“相对误差”对科学家和工程师至关重要,因为它帮助他们评估结果的可靠性,并根据这些结果做出明智的决策。为了说明这一概念,考虑一个简单的例子。假设一位科学家测量金属杆的长度,发现其为10.2厘米,但已知实际长度为10.0厘米。此测量中的绝对误差可以通过从测量值中减去真实值来计算:10.2厘米 - 10.0厘米 = 0.2厘米。然而,为了理解这个误差的显著性,我们需要计算“相对误差”。这可以通过将绝对误差除以真实值来完成:0.2厘米 / 10.0厘米 = 0.02。为了将其表示为百分比,我们乘以100,得到“相对误差”为2%。这意味着测量中的误差占真实值的2%,这提供了关于测量准确性的更清晰的画面。“相对误差”的重要性在比较不同测量时变得更加明显。例如,如果另一根杆子的测量为20.1厘米,而真实长度为20.0厘米,则绝对误差为0.1厘米,从而导致“相对误差”为0.1厘米 / 20.0厘米 = 0.005,或0.5%。尽管第二个测量的绝对误差小于第一个,但“相对误差”实际上较低,表明第二个测量相对于其真实值更为准确。在实际应用中,“相对误差”帮助工程师和科学家确定其仪器和方法的精度。例如,如果测量设备持续产生高“相对误差”,这可能表明该设备需要校准或更换。此外,在进行实验时,研究人员通常旨在最小化“相对误差”,以确保他们的发现是有效和可靠的。总之,“相对误差”的概念对于任何在科学和工程背景下处理测量的人来说都是至关重要的。通过量化相对于真实值的误差,“相对误差”提供了比绝对误差更有意义的准确性理解。这种理解使得更好的决策成为可能,并增强了各个领域结果的可靠性。随着技术的发展和测量的日益精确,理解和管理“相对误差”的重要性只会继续增长,使其成为追求知识和创新的基本概念。
相关单词