radioactive tracer

简明释义

放射指示剂

英英释义

A radioactive tracer is a substance that contains a radioactive atom and is used in medical imaging or research to track the movement of substances within a system.

放射性示踪剂是一种含有放射性原子的物质,用于医学成像或研究,以跟踪物质在系统中的运动。

例句

1.The use of a radioactive tracer in medical imaging allows for detailed visualization of organs and tissues.

在医学成像中使用放射性示踪剂可以详细可视化器官和组织。

2.Researchers injected a radioactive tracer into the soil to study nutrient absorption by plants.

研究人员将放射性示踪剂注入土壤,以研究植物对营养的吸收。

3.Doctors often use a radioactive tracer to diagnose diseases by tracking how the tracer moves through the body.

医生通常使用放射性示踪剂通过追踪示踪剂在体内的运动来诊断疾病。

4.In environmental studies, a radioactive tracer can help scientists understand the flow of pollutants in water systems.

在环境研究中,放射性示踪剂可以帮助科学家理解污染物在水系统中的流动。

5.A radioactive tracer is essential in PET scans to detect cancerous cells.

在PET扫描中,放射性示踪剂对于检测癌细胞至关重要。

作文

In the field of medicine, the use of a radioactive tracer has revolutionized diagnostic imaging and treatment. A radioactive tracer is a substance that emits radiation and is used to track the movement of substances within the body. By introducing a small amount of a radioactive isotope into the body, medical professionals can visualize and assess various physiological processes. This technique is particularly useful in nuclear medicine, where it helps in diagnosing conditions such as cancer, heart disease, and thyroid disorders.The principle behind a radioactive tracer is relatively simple. When the tracer is injected, ingested, or inhaled, it travels through the bloodstream and accumulates in certain organs or tissues. The emitted radiation can then be detected using specialized imaging equipment, such as a gamma camera or positron emission tomography (PET) scanner. These devices create detailed images that reveal the functional activity of the organs, allowing doctors to identify abnormalities that may not be visible through traditional imaging methods like X-rays or MRIs.One of the most significant advantages of using a radioactive tracer is its ability to provide real-time information about metabolic processes. For instance, in oncology, a common application is the use of fluorodeoxyglucose (FDG), a glucose analog labeled with a radioactive isotope. Since cancer cells often exhibit increased glucose metabolism, FDG-PET scans can help pinpoint malignant tumors, assess their size, and monitor response to therapy. This non-invasive approach minimizes the need for exploratory surgeries and biopsies, making it a safer option for patients.Moreover, radioactive tracers can be tailored to target specific organs or functions. For example, iodine-131 is frequently used to evaluate thyroid function and treat thyroid cancer. When administered, it selectively concentrates in the thyroid gland, allowing for precise imaging and targeted treatment. This specificity enhances the efficacy of the procedure while reducing exposure to surrounding healthy tissues.However, the use of radioactive tracers also raises important safety considerations. While the doses used in diagnostic procedures are generally low and considered safe, there is always a risk associated with exposure to radiation. Medical professionals must weigh the benefits against potential risks, ensuring that the use of a radioactive tracer is justified based on the clinical scenario. Additionally, patients are informed about the procedure, including any possible side effects and the importance of following post-procedure guidelines.In conclusion, the application of radioactive tracers in modern medicine exemplifies the intersection of technology and healthcare. By enabling detailed visualization of physiological processes, these tracers have enhanced our ability to diagnose and treat various medical conditions effectively. As research continues to advance, we can expect even more innovative uses for radioactive tracers, further improving patient outcomes and expanding our understanding of human health.

在医学领域,使用放射性示踪剂彻底改变了诊断成像和治疗。放射性示踪剂是一种发射辐射的物质,用于跟踪体内物质的运动。通过将少量放射性同位素引入体内,医学专业人员可以可视化和评估各种生理过程。这种技术在核医学中尤其有用,有助于诊断癌症、心脏病和甲状腺疾病等情况。放射性示踪剂的原理相对简单。当示踪剂被注射、摄入或吸入时,它会通过血液循环并在某些器官或组织中积聚。然后,可以使用专门的成像设备(如伽马相机或正电子发射断层扫描(PET)扫描仪)检测发射的辐射。这些设备创建详细的图像,揭示器官的功能活动,使医生能够识别可能无法通过传统成像方法(如X光或MRI)看到的异常。使用放射性示踪剂的一个显著优势是它能够提供关于代谢过程的实时信息。例如,在肿瘤学中,常见的应用是使用氟脱氧葡萄糖(FDG),这是一种标记有放射性同位素的葡萄糖类似物。由于癌细胞通常表现出增加的葡萄糖代谢,FDG-PET扫描可以帮助定位恶性肿瘤,评估其大小,并监测对治疗的反应。这种非侵入性的方法最小化了探索性手术和活检的需要,使其成为患者更安全的选择。此外,放射性示踪剂可以定制以针对特定的器官或功能。例如,碘-131常用于评估甲状腺功能和治疗甲状腺癌。当施用时,它会选择性地集中在甲状腺中,允许进行精确的成像和靶向治疗。这种特异性增强了程序的有效性,同时减少了对周围健康组织的暴露。然而,使用放射性示踪剂也引发了重要的安全考虑。虽然在诊断程序中使用的剂量通常较低且被认为是安全的,但始终存在与辐射暴露相关的风险。医疗专业人员必须权衡好处与潜在风险,确保使用放射性示踪剂是基于临床场景的合理依据。此外,患者会被告知有关该程序的信息,包括任何可能的副作用以及遵循术后指南的重要性。总之,放射性示踪剂在现代医学中的应用体现了技术与医疗保健的交汇。通过实现生理过程的详细可视化,这些示踪剂增强了我们有效诊断和治疗各种医疗状况的能力。随着研究的不断进展,我们可以期待放射性示踪剂的更多创新用途,进一步改善患者的治疗效果并扩展我们对人类健康的理解。

相关单词

tracer

tracer详解:怎么读、什么意思、用法