radioactive disintegration
简明释义
放射性衰变
英英释义
例句
1.In a lab, we can observe radioactive disintegration 放射性衰变 through the emission of particles.
在实验室中,我们可以通过粒子的释放观察到<波>放射性衰变波>。
2.Understanding radioactive disintegration 放射性衰变 helps in medical applications like cancer treatment.
理解<波>放射性衰变波>有助于癌症治疗等医疗应用。
3.Scientists study the rate of radioactive disintegration 放射性衰变 to date ancient artifacts.
科学家研究<波>放射性衰变波>的速率以对古代文物进行定年。
4.The process of radioactive disintegration 放射性衰变 is essential in understanding how nuclear reactors operate.
了解核反应堆如何运作的关键在于<波>放射性衰变波>的过程。
5.The safety protocols in nuclear plants are designed to monitor radioactive disintegration 放射性衰变 rates.
核电厂的安全协议旨在监测<波>放射性衰变波>的速率。
作文
Radioactive materials are substances that emit radiation as a result of the decay of their atomic nuclei. This process is known as radioactive disintegration, which refers to the transformation of an unstable atomic nucleus into a more stable one by emitting particles or electromagnetic waves. Understanding radioactive disintegration is crucial for various fields, including nuclear physics, medicine, and environmental science. The concept of radioactive disintegration was first discovered in the late 19th century when scientists like Henri Becquerel and Marie Curie observed that certain elements, such as uranium and radium, emitted radiation spontaneously. This phenomenon occurs because the atomic nucleus of these elements is unstable, leading to a release of energy in the form of radiation. The disintegration can take several forms, including alpha decay, beta decay, and gamma decay, each involving different types of particles being emitted.One of the most significant aspects of radioactive disintegration is its application in medicine, particularly in cancer treatment. Radioisotopes produced through radioactive disintegration can be used in targeted radiation therapy to destroy malignant cells while minimizing damage to surrounding healthy tissue. For instance, iodine-131, a product of radioactive disintegration, is commonly used to treat thyroid cancer. Moreover, radioactive disintegration plays a vital role in understanding the age of archaeological finds and geological formations. The technique known as radiocarbon dating relies on the predictable rate of radioactive disintegration of carbon-14, allowing scientists to determine the age of organic materials up to about 50,000 years old. This method has revolutionized fields such as archaeology and paleontology, providing insights into human history and the evolution of life on Earth.In addition to its beneficial applications, radioactive disintegration also poses risks to human health and the environment. Exposure to high levels of radiation can lead to serious health issues, including cancer and genetic mutations. Therefore, it is essential to manage radioactive waste carefully and adhere to safety regulations in facilities that handle radioactive materials. The Chernobyl disaster and the Fukushima Daiichi nuclear accident are stark reminders of the potential dangers associated with uncontrolled radioactive disintegration.In conclusion, radioactive disintegration is a fundamental process that has far-reaching implications across various domains. From its role in medical treatments to its applications in dating ancient artifacts, the understanding of radioactive disintegration is essential for harnessing its benefits while mitigating its risks. As technology advances, ongoing research into radioactive disintegration will likely yield new discoveries and applications, further enhancing our understanding of this complex phenomenon.
放射性物质是指由于其原子核的衰变而发出辐射的物质。这个过程被称为放射性衰变,它指的是不稳定的原子核通过发射粒子或电磁波而转变为更稳定的核。理解放射性衰变对于核物理、医学和环境科学等多个领域至关重要。放射性衰变的概念最早是在19世纪末被发现的,当时像亨利·贝克勒尔和玛丽·居里这样的科学家观察到某些元素,如铀和镭,自发地发出辐射。这种现象发生是因为这些元素的原子核不稳定,导致以辐射的形式释放能量。衰变可以采取多种形式,包括阿尔法衰变、贝塔衰变和伽马衰变,每种形式涉及不同类型的粒子被发射出去。放射性衰变的一个重要方面是其在医学中的应用,特别是在癌症治疗中。通过放射性衰变产生的放射性同位素可用于靶向放射治疗,以摧毁恶性细胞,同时尽量减少对周围健康组织的损害。例如,碘-131是一种放射性衰变的产物,通常用于治疗甲状腺癌。此外,放射性衰变在理解考古发现和地质构造的年代方面也起着至关重要的作用。放射性碳定年法依赖于碳-14的放射性衰变的可预测速率,使科学家能够确定有机材料的年龄,最多可追溯到大约5万年前。这种方法彻底改变了考古学和古生物学等领域,为人类历史和地球生命的演化提供了深刻的见解。除了其有益的应用之外,放射性衰变还对人类健康和环境构成风险。暴露于高水平的辐射可能导致严重的健康问题,包括癌症和基因突变。因此,必须仔细管理放射性废物,并遵守处理放射性材料的设施中的安全规定。切尔诺贝利灾难和福岛第一核电站事故是与失控的放射性衰变相关的潜在危险的严峻提醒。总之,放射性衰变是一个基本过程,在各个领域都有深远的影响。从其在医学治疗中的作用到在古代文物测年中的应用,理解放射性衰变对于利用其好处同时减轻其风险至关重要。随着技术的进步,对放射性衰变的持续研究可能会产生新的发现和应用,进一步增强我们对这一复杂现象的理解。
相关单词