racemic compound
简明释义
外消旋化合物
英英释义
A racemic compound is a mixture of equal amounts of two enantiomers, which are molecules that are mirror images of each other but cannot be superimposed. | 外消旋化合物是两种对映体的等量混合物,这些对映体是互为镜像但无法重叠的分子。 |
例句
1.Researchers discovered that one enantiomer of the racemic compound 外消旋化合物 was more effective than the other.
研究人员发现,某个手性异构体在外消旋化合物中比另一个更有效。
2.The racemic compound 外消旋化合物 was analyzed using chiral chromatography.
该外消旋化合物使用手性色谱法进行了分析。
3.The pharmaceutical industry often uses racemic compounds 外消旋化合物 to develop new medications.
制药行业常常使用外消旋化合物来开发新药。
4.To separate the enantiomers, we need to convert the racemic compound 外消旋化合物 into its individual components.
为了分离手性异构体,我们需要将外消旋化合物转化为其各个成分。
5.The synthesis of the drug involved creating a pure form from a mixture of the original racemic compound 外消旋化合物.
该药物的合成涉及从原始外消旋化合物的混合物中制备纯净形式。
作文
In the world of chemistry, understanding different types of compounds is crucial for various applications in pharmaceuticals, agriculture, and materials science. One important category of compounds is known as a racemic compound. A racemic compound is formed when equal amounts of two enantiomers, which are molecules that are mirror images of each other, combine. This phenomenon is particularly significant in the field of stereochemistry, where the spatial arrangement of atoms can greatly influence the properties and behaviors of substances. The term 'racemic' comes from the Latin word 'racemus', meaning a cluster of grapes, which reflects the idea of a mixture containing both forms. In nature, many compounds exist as chiral molecules, meaning they have non-superimposable mirror images. When these chiral molecules exist in equal proportions, they form a racemic compound, which is often optically inactive. This means that a racemic compound does not rotate plane-polarized light, unlike its individual enantiomers which can rotate light in opposite directions. The significance of racemic compounds extends beyond theoretical chemistry; they play a vital role in drug development. Many pharmaceutical drugs are chiral, and their enantiomers can have vastly different biological activities. For example, one enantiomer of a drug may be therapeutically beneficial, while the other could be harmful or ineffective. As a result, the presence of racemic compounds in drug formulations can complicate the therapeutic effects of medications. To illustrate this point, consider the case of thalidomide, a drug that was used in the late 1950s and early 1960s as a sedative and to treat morning sickness in pregnant women. Thalidomide exists as a racemic compound, with one enantiomer having the desired sedative effects, while the other caused severe birth defects. This tragic outcome highlighted the importance of understanding the implications of using racemic compounds in medicine and led to stricter regulations regarding drug approval processes. Moreover, the synthesis and separation of enantiomers from racemic compounds have become essential skills in modern organic chemistry. Techniques such as chiral chromatography and asymmetric synthesis are employed to isolate and produce the desired enantiomer for use in pharmaceuticals. This not only enhances the efficacy of drugs but also minimizes potential side effects associated with unwanted enantiomers. In conclusion, a racemic compound represents a fascinating aspect of chemistry that has profound implications in various fields, especially in medicine. Understanding the nature and behavior of racemic compounds allows chemists and researchers to develop safer and more effective drugs, ultimately improving patient outcomes. As we continue to explore the complexities of chemical compounds, the study of racemic compounds will remain a crucial area of research, highlighting the intricate relationship between molecular structure and biological activity.
在化学的世界中,理解不同类型的化合物对于药物、农业和材料科学等多个应用至关重要。其中一个重要的化合物类别被称为消旋化合物。消旋化合物是由两种对映体以相等的量结合而形成的,对映体是指彼此的镜像分子。这一现象在立体化学领域尤为重要,因为原子的空间排列可以极大地影响物质的性质和行为。“消旋”一词源于拉丁语“racemus”,意为一串葡萄,这反映了包含两种形式的混合物的概念。在自然界中,许多化合物以手性分子的形式存在,意味着它们具有不可叠加的镜像。当这些手性分子以相等比例存在时,它们形成消旋化合物,通常是光学不活泼的。这意味着消旋化合物不会旋转平面偏振光,而其各自的对映体则可以在相反方向上旋转光。消旋化合物的重要性不仅限于理论化学;它们在药物开发中也发挥着至关重要的作用。许多药物是手性的,其对映体可能具有截然不同的生物活性。例如,某种药物的一个对映体可能具有治疗效果,而另一个可能有害或无效。因此,消旋化合物在药物配方中的存在可能会使药物的治疗效果复杂化。为了说明这一点,可以考虑沙利度胺的案例,这是一种在1950年代末和1960年代初用作镇静剂和治疗孕妇晨吐的药物。沙利度胺作为消旋化合物存在,其中一个对映体具有所需的镇静效果,而另一个则导致严重的出生缺陷。这一悲剧结果突显了理解在医学中使用消旋化合物的含义的重要性,并导致了药物批准过程的更严格监管。此外,从消旋化合物中合成和分离对映体已成为现代有机化学中的基本技能。使用手性色谱和不对称合成等技术来分离和生产所需的对映体用于制药。这不仅提高了药物的疗效,还最小化了与不必要的对映体相关的潜在副作用。总之,消旋化合物代表了化学的一个迷人方面,在多个领域,尤其是医学中具有深远的影响。理解消旋化合物的性质和行为使化学家和研究人员能够开发出更安全、更有效的药物,最终改善患者的治疗效果。随着我们继续探索化合物的复杂性,消旋化合物的研究将仍然是一个关键的研究领域,突显分子结构与生物活性之间的复杂关系。
相关单词