scintillometer
简明释义
英[ˌsɪntɪˈlɒmɪtə(r)]美[ˌsɪntəˈlɑːmətər]
n. 闪烁计数器
英英释义
An instrument used to measure the intensity of scintillations, typically in the context of detecting radiation. | 一种用于测量闪烁强度的仪器,通常用于辐射探测的上下文中。 |
单词用法
闪烁计读数 | |
手持闪烁计 | |
校准闪烁计 | |
操作闪烁计 |
同义词
反义词
暗淡计 | 暗淡计用于测量低光水平。 | ||
非辐射计 | 非辐射计设备不检测辐射。 |
例句
1.These anomalies were located by handheld scintillometer.
这些异常是用手提式闪烁辐射仪测出的。
2.These anomalies were located by handheld scintillometer.
这些异常是用手提式闪烁辐射仪测出的。
3.The scientist used a scintillometer to measure the radiation levels in the environment.
科学家使用闪烁计来测量环境中的辐射水平。
4.The scintillometer detected higher radiation levels near the old nuclear site.
在旧核电站附近,闪烁计检测到更高的辐射水平。
5.The scintillometer is a crucial tool in radiation protection and monitoring.
闪烁计是辐射防护和监测中的重要工具。
6.Using a scintillometer, researchers can assess the safety of a location before construction.
研究人员可以使用闪烁计在施工前评估一个地点的安全性。
7.During the field study, the team relied on a scintillometer for accurate readings.
在实地研究中,团队依靠闪烁计进行准确读数。
作文
The study of radiation and its measurement is a critical aspect of modern science, particularly in fields such as nuclear physics, medical imaging, and environmental monitoring. One of the essential instruments used in this area is the scintillometer, which plays a vital role in detecting and measuring ionizing radiation. A scintillometer (闪烁计) works by using certain materials that emit light when they are struck by radiation. This light is then detected and quantified, allowing scientists to measure the intensity of the radiation present in a given environment.In recent years, the use of scintillometers has expanded beyond traditional laboratory settings into the field. Environmental scientists utilize these devices to monitor background radiation levels in various locations, ensuring that the public is safe from harmful exposure. For instance, after a nuclear incident, scintillometers are deployed to assess the radiation levels in the affected areas. Their ability to provide immediate feedback makes them invaluable in emergency response situations.Moreover, in the medical field, scintillometers are utilized in diagnostic imaging techniques such as positron emission tomography (PET) scans. These scans help doctors visualize metabolic processes in the body, leading to more accurate diagnoses and better treatment plans. The precision and reliability of scintillometers in measuring radiation make them indispensable tools for healthcare professionals.The technology behind scintillometers has evolved significantly over the years. Modern devices are often portable, battery-operated, and equipped with digital displays that allow for easy reading and interpretation of data. This portability means that scintillometers can be used in remote locations, making them ideal for field studies and surveys. Researchers can easily carry these devices into challenging terrains, from dense forests to arid deserts, without compromising their functionality.Additionally, the integration of advanced software with scintillometers has enhanced their capabilities. Many modern units can now connect to smartphones or computers, allowing for real-time data analysis and storage. This feature not only streamlines the process of data collection but also enables researchers to share their findings instantly with colleagues around the world.Despite their many advantages, the use of scintillometers does come with challenges. One significant issue is the calibration of these devices to ensure accurate readings. Regular maintenance and calibration are necessary to account for any factors that may affect their performance, such as temperature fluctuations or physical damage. Furthermore, users must be trained to interpret the data correctly, as misinterpretation can lead to misguided conclusions about radiation levels.In conclusion, the scintillometer (闪烁计) is a crucial tool in the measurement of ionizing radiation, with applications spanning various fields including environmental science and medicine. Its ability to provide quick and accurate readings makes it an essential instrument for researchers and healthcare professionals alike. As technology continues to advance, we can expect further improvements in the design and functionality of scintillometers, potentially leading to even greater impacts on public health and safety. Understanding how to effectively use and interpret the data from scintillometers will be key in harnessing their full potential in the future.
辐射及其测量的研究是现代科学的重要方面,特别是在核物理、医学成像和环境监测等领域。scintillometer(闪烁计)就是这一领域中使用的重要仪器,它在检测和测量电离辐射方面发挥着重要作用。scintillometer通过使用某些材料,在受到辐射冲击时会发出光。这种光被检测并定量,从而使科学家能够测量特定环境中存在的辐射强度。近年来,scintillometers的使用已从传统实验室扩展到现场。环境科学家利用这些设备监测各种地点的背景辐射水平,以确保公众免受有害暴露。例如,在核事故后,scintillometers被部署以评估受影响区域的辐射水平。它们提供即时反馈的能力使其在应急响应情况下变得不可或缺。此外,在医疗领域,scintillometers被用于诊断成像技术,如正电子发射断层扫描(PET)。这些扫描帮助医生可视化体内的代谢过程,从而导致更准确的诊断和更好的治疗方案。scintillometers在测量辐射方面的精确性和可靠性使其成为医疗专业人员不可或缺的工具。scintillometers背后的技术多年来发生了显著变化。现代设备通常是便携式的,电池供电,并配备数字显示屏,便于数据的读取和解释。这种便携性意味着scintillometers可以在偏远地区使用,使其成为野外研究和调查的理想选择。研究人员可以轻松将这些设备带入复杂的地形,从密林到干旱沙漠,而不会影响其功能。此外,先进软件与scintillometers的集成增强了其能力。许多现代设备现在可以连接到智能手机或计算机,允许实时数据分析和存储。此功能不仅简化了数据收集过程,还使研究人员能够立即与全球同事分享他们的发现。尽管有许多优点,使用scintillometers也面临挑战。一个重要问题是这些设备的校准,以确保读数的准确性。定期维护和校准是必要的,以考虑可能影响其性能的任何因素,例如温度波动或物理损坏。此外,用户必须经过培训以正确解释数据,因为误解可能导致对辐射水平的错误结论。总之,scintillometer(闪烁计)是测量电离辐射的关键工具,应用于环境科学和医学等多个领域。其快速和准确的读数能力使其成为研究人员和医疗专业人员不可或缺的仪器。随着技术的不断进步,我们可以期待scintillometers在设计和功能上的进一步改进,可能会对公共健康和安全产生更大的影响。有效理解如何使用和解释scintillometers的数据将是未来充分利用其潜力的关键。