superposition

简明释义

[ˌsuːpərpəˈzɪʃən][ˌsuːpərpəˈzɪʃən]

n. [数] 叠加,重合

英英释义

The arrangement of different layers or elements in a particular order, often used in contexts such as physics, geology, and mathematics.

不同层或元素以特定顺序排列的方式,通常用于物理、地质和数学等领域。

In quantum mechanics, the principle that a physical system can exist in multiple states or configurations simultaneously until it is measured.

在量子力学中,物理系统可以同时存在于多种状态或配置中,直到被测量为止的原理。

单词用法

superposition method

叠加法;重叠法

superposition principle

[物]叠加原理

同义词

overlap

重叠

The two images have a significant overlap.

这两幅图像有显著的重叠。

superimposition

叠加

The artist used superimposition to create depth in the painting.

艺术家使用叠加技术为画作增添深度。

stacking

堆叠

Stacking the boxes made better use of the space.

堆叠箱子更好地利用了空间。

反义词

subtraction

减法

The subtraction of two numbers is essential in mathematics.

在数学中,两个数字的减法是必不可少的。

separation

分离

Separation of the components is necessary for analysis.

成分的分离对于分析是必要的。

例句

1.But quantum systems have a property called superposition, where all these combinations can exist at once.

而量子计算机系统具有一种所谓的叠加特性,即上述的四种组合可以并存。

2.The characteristics of this "echo" pulse tell us about the superposition we have made. Credit: ucl.

这种“回波”脉冲的特性可以告诉我们系统处于何种叠加态上。

3.If you've never been exposed to this concept of superposition before it can be a little confusing.

如果您以前从未接触过叠加这个概念,那么它可能有点儿令人困惑。

4.Although it is composed by symbolization and signification, the finery symbol system is not the superposition of these two parts in brief.

虽然服装符号系统是由符号化和指示行为两部分构成的,但服装符号系统并非这两部分的简单叠加。

5.By measuring a, we collapsed the superposition of b.

通过测量a,我们使b的叠加坍缩了。

6.For different joint offence superposition in different theories, there are divergences in resolving methods and functions.

对于不同共犯理论中的共犯竞合,其解决的方法和机能存在差异。

7.The superposition of all these elements results in a typical drain-source voltage shown in Fig. 16.

把这些原理按时序整合呈现出图16所示的典型漏源极电压。

8.This easy visual contact helps you understand the flat as a whole, and not just as the superposition of two different floors.

这种简单清晰的视觉联系能够帮你把公寓作为一个整体来理解,而不仅仅是两个不同楼层的叠加。

9.One of the marvelous little wrinkles of the quantum world is a condition known as superposition, in which a particle can occupy two states at the same time.

量子世界的一个小小的令人惊奇的是一种被称作叠加态的状态。在这种状态下,一个粒子可以同时占据着两种状态。

10.In audio engineering, superposition 叠加 of sound waves can create richer sounds and effects.

在音频工程中,声音波的 superposition 叠加 可以创造出更丰富的声音和效果。

11.In quantum mechanics, the concept of superposition 叠加态 allows particles to exist in multiple states at once.

在量子力学中,superposition 叠加态 的概念允许粒子同时存在于多个状态。

12.The superposition 叠加 of different electromagnetic fields can lead to interference patterns.

不同电磁场的 superposition 叠加 可以导致干涉图样。

13.The principle of superposition 叠加原理 is fundamental in physics, allowing us to analyze complex systems by breaking them down into simpler parts.

在物理学中,superposition 叠加原理 是基本的,允许我们通过将复杂系统分解为更简单的部分来进行分析。

14.In structural engineering, the superposition 叠加原理 helps in calculating the effects of multiple loads on a structure.

在结构工程中,superposition 叠加原理 有助于计算多个载荷对结构的影响。

作文

In the realm of physics and mathematics, the concept of superposition plays a crucial role in understanding various phenomena. The term superposition refers to the principle that states that when two or more waves overlap, the resulting wave is the sum of the individual waves. This principle is not only applicable in physics but also finds its significance in various fields such as engineering, music, and even quantum mechanics. Understanding superposition can provide deeper insights into how different systems interact with each other.To illustrate this concept, let us consider a simple example involving sound waves. When two musical instruments play at the same time, the sound we hear is a combination of the individual sounds produced by each instrument. This phenomenon is a direct application of superposition. If one instrument plays a note at a certain frequency, and another instrument plays a note at a different frequency, the resulting sound wave will carry characteristics from both instruments. This blending of sounds creates a richer auditory experience, showcasing how superposition enhances our perception of music.In physics, superposition is essential for understanding wave behavior. For instance, when light waves from different sources intersect, they can create patterns of interference. These patterns can be constructive, where the waves reinforce each other, or destructive, where they cancel each other out. This behavior is often observed in experiments involving lasers and diffraction gratings, where the superposition of light waves results in striking visual patterns. Such experiments highlight the importance of superposition in wave theory and its implications in technology, such as in optical devices and telecommunications.Moreover, the principle of superposition extends beyond classical physics into the realm of quantum mechanics. In quantum theory, particles such as electrons can exist in multiple states simultaneously until they are observed. This phenomenon is known as quantum superposition, where a particle's state is described as a combination of all possible states it could occupy. This unique property of particles has profound implications for technologies like quantum computing, where information can be processed in ways that classical computers cannot achieve. By leveraging superposition, quantum computers have the potential to solve complex problems much faster than traditional computers.In conclusion, the concept of superposition is fundamental to various scientific disciplines. Whether it is through the blending of sound waves in music, the interference patterns of light in physics, or the fascinating behaviors of particles in quantum mechanics, superposition helps us understand the complexity of interactions in the natural world. By embracing this principle, we can appreciate the beauty of how different elements come together to create something greater than their individual parts. As we continue to explore the implications of superposition in science and technology, it opens up new avenues for innovation and discovery, enriching our understanding of the universe.

在物理和数学领域,叠加的概念在理解各种现象中起着至关重要的作用。术语叠加指的是这样一个原理:当两个或多个波重叠时,结果波是各个波的总和。这个原理不仅适用于物理学,还在工程、音乐甚至量子力学等多个领域中具有重要意义。理解叠加可以为我们提供更深入的洞察,了解不同系统如何相互作用。为了说明这一概念,让我们考虑一个涉及声波的简单例子。当两种乐器同时演奏时,我们听到的声音是每种乐器产生的单独声音的组合。这一现象是叠加的直接应用。如果一种乐器以某一频率演奏一个音符,而另一种乐器以不同的频率演奏另一个音符,结果的声波将包含来自两种乐器的特征。这种声音的融合创造了更丰富的听觉体验,展示了叠加如何增强我们对音乐的感知。在物理学中,叠加对于理解波动行为至关重要。例如,当来自不同来源的光波相交时,它们可以创建干涉模式。这些模式可以是建设性的,即波相互增强,或者是破坏性的,即它们相互抵消。这种行为通常在激光和衍射光栅实验中观察到,其中光波的叠加产生引人注目的视觉图案。这些实验突显了叠加在波动理论及其在技术中的应用的重要性,例如在光学设备和电信中。此外,叠加原理不仅限于经典物理学,还扩展到量子力学的领域。在量子理论中,电子等粒子可以同时存在于多个状态,直到被观察到。这种现象被称为量子叠加,其中粒子的状态被描述为它可能占据的所有可能状态的组合。这种粒子的独特属性对量子计算等技术具有深远的影响,量子计算能够以传统计算机无法实现的方式处理信息。通过利用叠加,量子计算机有潜力比传统计算机更快地解决复杂问题。总之,叠加的概念是各种科学学科的基础。无论是音乐中声波的混合,物理学中光的干涉图案,还是量子力学中粒子的迷人行为,叠加帮助我们理解自然界中相互作用的复杂性。通过接受这一原理,我们可以欣赏不同元素如何结合在一起创造出比其各自部分更伟大的东西。随着我们继续探索叠加在科学和技术中的影响,这为创新和发现开辟了新的途径,丰富了我们对宇宙的理解。