imidazole

简明释义

[ˌɪmɪdˈæzəʊl][ˌɪmɪˈdæˌzoʊl]

n. 咪唑;异吡唑

英英释义

Imidazole is a five-membered heterocyclic compound containing two nitrogen atoms at non-adjacent positions, commonly found in various biological molecules.

咪唑是一种含有两个氮原子的五元杂环化合物,氮原子位于非相邻的位置,常见于各种生物分子中。

单词用法

imidazole ring

咪唑环

imidazole derivatives

咪唑衍生物

imidazole-based compounds

基于咪唑的化合物

synthesize imidazole

合成imidazole

react with imidazole

imidazole反应

imidazole as a catalyst

作为催化剂的imidazole

同义词

benzimidazole

苯并咪唑

Benzimidazole is used in the synthesis of various pharmaceuticals.

苯并咪唑用于合成各种药物。

imidazoline

咪唑啉

Imidazoline derivatives are important in the development of antihypertensive agents.

咪唑啉衍生物在抗高血压药物的开发中非常重要。

pyrrole

吡咯

Pyrrole is a key building block in organic chemistry.

吡咯是有机化学中的一个关键构建块。

反义词

alkane

烷烃

Alkanes are saturated hydrocarbons with single bonds.

烷烃是具有单键的饱和烃。

ketone

Ketones are organic compounds characterized by a carbonyl group.

酮是一类以羰基为特征的有机化合物。

例句

1.Sulphurous derivatives of imidazole, their preparation process, intermediates obtained, their use as medicaments and pharmaceutical compositions containing them.

新颖的咪唑亚硫衍生物,它们的制备方法,所得的新中间体,作药剂的使用以及含其药物组合物。

2.Highlighted the main features of the present and the synthesis of functional and chiral imidazole ionic liquid method.

重点介绍了目前主要的功能化和手性咪唑离子液体合成方法。

3.Results: H2O2 can promote the photodegradation of Fleroxacin, Imidazole can restrain the photodegradation of Fleroxacin and Pefloxacin.

结果:过氧化氢对氟罗沙星光降解有促进作用,咪唑对氟罗沙星和培氟沙星光降解有抑制作用。

4.The invention relates to an application method of hydrogen sulfate imidazole ion fluid in copper electrolysis refining.

本发明是硫酸氢咪唑离子液体在铜电解精炼中的应用。

5.Degradation and residue of imazalil and guazatine were studied in citrus standing for imidazole and bisguanidine.

研究了咪唑类药剂抑霉唑和双胍类药剂百可得在柑桔中的残留情况。

6.Bis (1-imidazolyl) methane was prepared using imidazole and dibromomethane as raw materials.

以二溴甲烷和咪唑为原料合成了二(1-咪唑基)甲烷。

7.Therefore, it can be concluded that both imidazole ring and thiazole ring have bioactivity.

因而我们可以确信咪唑环和噻唑环是具有生物活性的。

8.In recent years, the demand for methylglyoxal increased with the rise of the demand for imidazole and furanone.

近年来随着咪唑以及呋喃酮等香料需求的增加,丙酮醛的需求也在逐步升高。

9.At the same time, many newly developed compounds containing imidazole ring or thiazole ring also have bioactivity.

同时,含有咪唑环或噻唑环的新研制的众多化合物也具有生物活性。

10.Many pharmaceuticals contain imidazole 咪唑 derivatives due to their biological activity.

许多药物含有imidazole 咪唑衍生物,因为它们具有生物活性。

11.The role of imidazole 咪唑 in enzyme catalysis is crucial for understanding metabolic pathways.

imidazole 咪唑在酶催化中的作用对理解代谢途径至关重要。

12.In the laboratory, we used imidazole 咪唑 as a buffer component in our biochemical experiments.

在实验室中,我们使用imidazole 咪唑作为生化实验中的缓冲成分。

13.We synthesized a new ligand based on imidazole 咪唑 for metal ion coordination.

我们合成了一种基于imidazole 咪唑的新配体,用于金属离子配位。

14.The compound contains a five-membered ring structure with two nitrogen atoms, characteristic of imidazole 咪唑.

该化合物含有一个由两个氮原子组成的五元环结构,这是imidazole 咪唑的特征。

作文

Imidazole is a fascinating organic compound that plays a crucial role in various biochemical processes. It is a five-membered heterocyclic ring containing two nitrogen atoms at non-adjacent positions. This unique structure allows imidazole (咪唑) to participate in a variety of chemical reactions, making it an essential component in many biological systems. One of the most notable aspects of imidazole (咪唑) is its presence in histidine, an amino acid that is vital for protein synthesis and enzyme function. Histidine contains an imidazole (咪唑) side chain, which can readily donate or accept protons, thus playing a significant role in enzyme catalysis and buffering within cells.The importance of imidazole (咪唑) extends beyond just its role in histidine. Many pharmaceuticals and agrochemicals incorporate imidazole (咪唑) derivatives due to their ability to interact with biological targets. For instance, certain antifungal medications, such as ketoconazole, contain imidazole (咪唑) moieties that inhibit the synthesis of ergosterol, a critical component of fungal cell membranes. This interaction showcases how the structural properties of imidazole (咪唑) can be leveraged to develop effective therapeutic agents.In addition to its applications in medicine, imidazole (咪唑) is also utilized in various industrial processes. Its ability to act as a catalyst or ligand in coordination chemistry has made it a valuable substance in organic synthesis. For example, imidazole (咪唑) is often used as a ligand in the formation of metal complexes, which are important in catalyzing a wide range of chemical reactions. This versatility highlights the significance of imidazole (咪唑) in both biological and synthetic contexts.Moreover, the study of imidazole (咪唑) and its derivatives continues to be an active area of research. Scientists are exploring new ways to utilize imidazole (咪唑) in drug design and development, as well as in the creation of novel materials. The unique electronic properties of imidazole (咪唑) allow for the development of compounds with specific functionalities, which could lead to breakthroughs in various fields, including nanotechnology and biochemistry.In conclusion, imidazole (咪唑) is more than just a simple organic compound; it is a key player in numerous biological and chemical processes. Its structural characteristics enable it to function in diverse roles, from being a fundamental part of amino acids to serving as a building block for pharmaceuticals and catalysts. As research progresses, the full potential of imidazole (咪唑) will undoubtedly continue to unfold, revealing new applications and insights into its significance in science and industry.

咪唑是一种迷人的有机化合物,在各种生化过程中起着至关重要的作用。它是一个五元杂环,包含两个非相邻位置的氮原子。这种独特的结构使得咪唑能够参与多种化学反应,成为许多生物系统中的重要组成部分。咪唑最显著的方面之一是它在组氨酸中的存在,组氨酸是一种对蛋白质合成和酶功能至关重要的氨基酸。组氨酸含有一个咪唑侧链,可以很容易地捐赠或接受质子,因此在酶催化和细胞内缓冲中发挥了重要作用。咪唑的重要性不仅限于其在组氨酸中的作用。许多药物和农化产品都包含咪唑衍生物,因为它们能够与生物靶标相互作用。例如,某些抗真菌药物,如酮康唑,含有咪唑部分,可以抑制麦角甾醇的合成,而麦角甾醇是真菌细胞膜的关键成分。这种相互作用展示了咪唑的结构特性如何被利用来开发有效的治疗剂。除了在医学中的应用外,咪唑还用于各种工业过程。它作为催化剂或配体在配位化学中的能力使其成为有机合成中的一种宝贵物质。例如,咪唑常用作形成金属络合物的配体,这在催化广泛的化学反应中非常重要。这种多样性突显了咪唑在生物和合成背景下的重要性。此外,咪唑及其衍生物的研究仍然是一个活跃的领域。科学家们正在探索利用咪唑在药物设计和开发以及新材料的创造中的新方法。咪唑独特的电子特性使得可以开发具有特定功能的化合物,这可能会导致在纳米技术和生物化学等各个领域的突破。总之,咪唑不仅仅是一种简单的有机化合物;它是众多生物和化学过程中关键的参与者。它的结构特征使其在多种角色中发挥作用,从作为氨基酸的基本部分到作为药物和催化剂的构建块。随着研究的进展,咪唑的全部潜力无疑将继续展开,揭示其在科学和工业中重要性的新的应用和见解。