oxidation reduction cell

简明释义

氧化还原电池

英英释义

An oxidation reduction cell, often referred to as a redox cell, is an electrochemical cell that generates electrical energy through the transfer of electrons between two substances, where one substance undergoes oxidation (losing electrons) and the other undergoes reduction (gaining electrons).

氧化还原电池,通常称为红氧电池,是一种通过两个物质之间的电子转移产生电能的电化学电池,其中一种物质发生氧化(失去电子),另一种物质发生还原(获得电子)。

例句

1.Researchers are developing new types of oxidation reduction cells 氧化还原电池 to improve energy storage efficiency.

研究人员正在开发新型的氧化还原电池 氧化还原电池以提高能量存储效率。

2.The corrosion of metals can be explained through the principles of an oxidation reduction cell 氧化还原电池.

金属的腐蚀可以通过氧化还原电池 氧化还原电池的原理来解释。

3.Scientists are studying the electrochemical processes in oxidation reduction cells 氧化还原电池 to enhance battery life.

科学家们正在研究氧化还原电池 氧化还原电池中的电化学过程,以延长电池寿命。

4.In a fuel cell vehicle, the oxidation reduction cell 氧化还原电池 generates electricity by combining hydrogen and oxygen.

在燃料电池汽车中,氧化还原电池 氧化还原电池通过氢气和氧气的结合生成电力。

5.The battery in your smartphone is an example of an oxidation reduction cell 氧化还原电池 that converts chemical energy into electrical energy.

你手机里的电池是一个例子,它是一个氧化还原电池 氧化还原电池,将化学能转化为电能。

作文

In the realm of chemistry, understanding the fundamental concepts of reactions is essential for grasping how substances interact with one another. One of the most crucial types of reactions is the redox reaction, which involves the transfer of electrons between two species. Central to this process is the concept of an oxidation reduction cell, a device that facilitates these electron transfers in a controlled manner. An oxidation reduction cell (氧化还原电池) is essentially an electrochemical cell that converts chemical energy into electrical energy through redox reactions. This transformation is not only fascinating but also has practical applications in various fields, including energy storage and generation.The operation of an oxidation reduction cell can be illustrated with a simple example: the galvanic cell. In a galvanic cell, two different metals are immersed in electrolyte solutions, creating two half-cells. One metal undergoes oxidation, losing electrons, while the other metal undergoes reduction, gaining electrons. The flow of electrons from the anode (the site of oxidation) to the cathode (the site of reduction) generates an electric current, which can be harnessed to power devices.The significance of oxidation reduction cells extends beyond just generating electricity; they play a vital role in many biological processes as well. For instance, cellular respiration in living organisms relies on redox reactions to convert glucose into usable energy. Mitochondria, often referred to as the powerhouse of the cell, utilize oxidation reduction cells to facilitate the conversion of biochemical energy into adenosine triphosphate (ATP), the energy currency of the cell. This biological application highlights the importance of understanding how oxidation reduction cells function at a molecular level.Moreover, advancements in technology have led to the development of more efficient oxidation reduction cells. For instance, researchers are continuously exploring new materials for electrodes and electrolytes to enhance the performance of batteries and fuel cells. Lithium-ion batteries, commonly used in portable electronics and electric vehicles, are one such application of oxidation reduction cells. These batteries rely on the reversible redox reactions of lithium ions between the anode and cathode, demonstrating the practical implications of this scientific principle.Environmental concerns have also prompted interest in oxidation reduction cells for sustainable energy solutions. Fuel cells, which convert hydrogen and oxygen into water while producing electricity, are a prime example of how oxidation reduction cells can contribute to cleaner energy sources. By harnessing the power of redox reactions, we can potentially reduce our reliance on fossil fuels and minimize environmental impact.In conclusion, the concept of an oxidation reduction cell is pivotal in both theoretical chemistry and practical applications. From powering everyday devices to playing a critical role in biological systems, oxidation reduction cells exemplify the intricate relationship between chemistry and technology. As we continue to innovate and seek sustainable energy solutions, understanding and mastering the principles behind oxidation reduction cells will be essential for future advancements. By delving deeper into this subject, we can unlock new possibilities for energy efficiency and environmental sustainability, paving the way for a greener future.

在化学领域,理解反应的基本概念对于掌握物质之间的相互作用至关重要。最关键的反应类型之一是氧化还原反应,它涉及两个物种之间的电子转移。与这一过程密切相关的是“氧化还原电池”的概念,这是一种以受控方式促进这些电子转移的装置。“氧化还原电池”是一个电化学电池,通过氧化还原反应将化学能转化为电能。这种转化不仅令人着迷,而且在包括能源存储和发电等多个领域具有实际应用。“氧化还原电池”的运行可以通过一个简单的例子来说明:电池。在电池中,两种不同的金属浸入电解质溶液中,形成两个半电池。一种金属发生氧化,失去电子,而另一种金属发生还原,获得电子。电子从阳极(氧化发生的地方)流向阴极(还原发生的地方),产生电流,可以被用来为设备供电。“氧化还原电池”的重要性不仅限于发电;它们在许多生物过程中也发挥着至关重要的作用。例如,生物体内的细胞呼吸依赖于氧化还原反应将葡萄糖转化为可用能量。线粒体,通常被称为细胞的动力源,利用“氧化还原电池”促进生化能量转化为三磷酸腺苷(ATP),即细胞的能量货币。这一生物应用突显了理解“氧化还原电池”在分子水平上如何运作的重要性。此外,技术的进步导致了更高效的“氧化还原电池”的发展。例如,研究人员不断探索新材料作为电极和电解质,以提高电池和燃料电池的性能。锂离子电池,广泛用于便携式电子设备和电动汽车,是“氧化还原电池”的一种应用。这些电池依赖于锂离子在阳极和阴极之间的可逆氧化还原反应,展示了这一科学原理的实际意义。环境问题也促使人们对“氧化还原电池”在可持续能源解决方案中的兴趣。燃料电池将氢和氧转化为水,同时产生电力,是“氧化还原电池”如何为清洁能源来源做出贡献的一个典范。通过利用氧化还原反应的力量,我们可以潜在地减少对化石燃料的依赖,降低环境影响。总之,“氧化还原电池”的概念在理论化学和实际应用中都是至关重要的。从为日常设备供电到在生物系统中发挥关键作用,“氧化还原电池”体现了化学与技术之间的复杂关系。随着我们继续创新并寻求可持续的能源解决方案,理解和掌握“氧化还原电池”背后的原理将对未来的进步至关重要。通过深入研究这一主题,我们可以为能源效率和环境可持续性解锁新的可能性,为更绿色的未来铺平道路。

相关单词

oxidation

oxidation详解:怎么读、什么意思、用法

reduction

reduction详解:怎么读、什么意思、用法

cell

cell详解:怎么读、什么意思、用法