orthorhombic system

简明释义

正交系

英英释义

A crystal system characterized by three mutually perpendicular axes of different lengths, resulting in a rectangular prism shape.

一种晶体系统,其特征是三个相互垂直且长度不同的轴,形成矩形棱柱的形状。

例句

1.The physical properties of materials in the orthorhombic system 正交晶系 can vary significantly based on their orientation.

位于orthorhombic system 正交晶系中的材料的物理性质可能会根据其方向显著变化。

2.In the lab, we observed that the crystal structure of sulfur is classified as an orthorhombic system 正交晶系.

在实验室中,我们观察到硫的晶体结构被归类为orthorhombic system 正交晶系

3.The orthorhombic system 正交晶系 is one of the seven crystal systems used in crystallography.

在晶体学中,orthorhombic system 正交晶系是七种晶体系统之一。

4.Many gemstones, such as topaz, exhibit an orthorhombic system 正交晶系 structure.

许多宝石,如黄玉,表现出orthorhombic system 正交晶系的结构。

5.The mineral beryl crystallizes in an orthorhombic system 正交晶系, which is characterized by three unequal axes at right angles.

矿物绿柱石结晶于一个orthorhombic system 正交晶系中,其特征是三个不等的轴在直角下相交。

作文

The study of crystallography has revealed a fascinating world of geometric structures that form the basis of various materials. One such structure is the orthorhombic system, which plays a crucial role in understanding the properties and behaviors of certain crystalline substances. In an orthorhombic system, crystals are characterized by three mutually perpendicular axes that are of different lengths, creating a unique rectangular prism shape. This distinct arrangement not only influences the symmetry of the crystal but also affects its physical properties, including how it interacts with light and conducts electricity.To delve deeper into the significance of the orthorhombic system, we must first appreciate its prevalence in nature. Many minerals, such as olivine and barite, exhibit this crystal structure. The presence of the orthorhombic system in these minerals indicates specific conditions under which they formed, often related to temperature and pressure during geological processes. Understanding these conditions is vital for geologists and mineralogists who seek to uncover the history of the Earth’s crust and the formation of various rock types.Moreover, the orthorhombic system is not limited to natural minerals; it also finds applications in various fields of science and technology. For instance, in the realm of materials science, researchers are exploring the properties of synthetic materials that adopt an orthorhombic system. These materials often exhibit enhanced strength and stability, making them ideal for use in construction, electronics, and even aerospace applications. The ability to engineer materials with specific crystal structures allows scientists to tailor their properties for desired applications, thus advancing technology in numerous ways.In addition to practical applications, studying the orthorhombic system also contributes to our theoretical understanding of crystallography. By analyzing the symmetry and arrangement of atoms within an orthorhombic system, researchers can gain insights into the fundamental principles that govern crystal growth and behavior. This knowledge is essential for developing new theories in solid-state physics and chemistry, ultimately leading to breakthroughs in various scientific fields.Furthermore, the orthorhombic system serves as a reminder of the intricate beauty of nature’s design. The orderly arrangement of atoms within these crystals reflects a level of complexity and precision that continues to inspire scientists and artists alike. From the stunning visual patterns seen in gemstones to the intricate structures found in biological systems, the influence of the orthorhombic system extends far beyond the laboratory.In conclusion, the orthorhombic system is a fundamental concept in the study of crystallography that encompasses both natural and synthetic materials. Its unique characteristics and applications highlight the importance of understanding crystal structures in various scientific disciplines. As we continue to explore the world of crystals, the orthorhombic system will undoubtedly remain a key focus of research, offering new insights into the materials that shape our world and the underlying principles that govern their behavior.

晶体学的研究揭示了一个迷人的几何结构世界,这些结构构成了各种材料的基础。其中一个结构是正交晶系,它在理解某些晶体物质的性质和行为方面起着至关重要的作用。在正交晶系中,晶体的特征是三个相互垂直的轴,其长度不同,形成独特的长方体形状。这种独特的排列不仅影响晶体的对称性,还影响其物理性质,包括它与光的相互作用和电导率。为了深入了解正交晶系的重要性,我们首先必须欣赏它在自然界中的普遍性。许多矿物,如橄榄石和重晶石,表现出这种晶体结构。这些矿物中存在正交晶系表明它们形成时的特定条件,通常与地质过程中的温度和压力有关。理解这些条件对于寻求揭示地球地壳历史和各种岩石类型形成的地质学家和矿物学家至关重要。此外,正交晶系并不限于天然矿物;它在科学和技术的各个领域也找到了应用。例如,在材料科学领域,研究人员正在探索采用正交晶系的合成材料的性质。这些材料通常表现出增强的强度和稳定性,使它们成为建筑、电子甚至航空航天应用的理想选择。能够工程化具有特定晶体结构的材料使科学家能够为所需应用量身定制其属性,从而在多个方面推动技术进步。除了实际应用之外,研究正交晶系还促进了我们对晶体学的理论理解。通过分析正交晶系中原子的对称性和排列,研究人员可以深入了解支配晶体生长和行为的基本原则。这一知识对于发展固态物理学和化学的新理论至关重要,最终导致各个科学领域的突破。此外,正交晶系提醒我们自然设计的复杂美。这些晶体中原子的有序排列反映了一个复杂性和精确性的水平,继续激励科学家和艺术家。从宝石中看到的惊人视觉图案到生物系统中发现的复杂结构,正交晶系的影响远远超出了实验室。总之,正交晶系是晶体学研究中的一个基本概念,涵盖了自然和合成材料。其独特的特征和应用突显了理解各种科学学科中晶体结构的重要性。随着我们继续探索晶体的世界,正交晶系无疑将继续成为研究的重点,为塑造我们世界的材料及其行为的基本原则提供新的见解。

相关单词

orthorhombic

orthorhombic详解:怎么读、什么意思、用法