protonic

简明释义

[/proʊˈtɒnɪk/][/proʊˈtɒnɪk/]

adj. 质子的

英英释义

Relating to protons or the properties of protons.

与质子或质子的性质有关。

单词用法

同义词

proton

质子

The protonic charge of the particle is essential for its interactions.

粒子的质子电荷对于其相互作用至关重要。

ionic

离子

Ionic compounds often exhibit protonic behavior in solution.

离子化合物在溶液中通常表现出质子性行为。

反义词

anionic

阴离子的

Anionic surfactants are often used in cleaning products.

阴离子表面活性剂常用于清洁产品中。

negatively charged

带负电的

Negatively charged ions can attract positively charged particles.

带负电的离子可以吸引带正电的粒子。

例句

1.The reaction can be catalyzed by protonic Acid.

质子酸可以催化反应的完成。

2.It is discovered that isomerization of 2,10-epoxypinane produce mainly perillyl alcohol in 353 ~ 363 K catalyzed by acid catalysts in strongly polar protonic solvent.

结果表明:在酸催化剂存在下,强极性非质子溶剂中,2,10-环氧蒎烷于353-363K可定向重排生成紫苏醇。

3.It is discovered that isomerization of 2,10-epoxypinane produce mainly perillyl alcohol in 353 ~ 363 K catalyzed by acid catalysts in strongly polar protonic solvent.

结果表明:在酸催化剂存在下,强极性非质子溶剂中,2,10-环氧蒎烷于353-363K可定向重排生成紫苏醇。

4.Crosslinkable aromatic resin having protonic acid group, and ion conductive polymer membrane, binder and fuel cell using the resin.

含质子酸基交联性芳香族树脂及使用该树脂的离子传导性高分子膜,粘合剂,以及燃料电池。

5.The protonic 质子性的 nature of water makes it a universal solvent.

水的质子性的特性使其成为一种通用溶剂。

6.The study focused on the behavior of protonic 质子性的 interactions in acidic solutions.

这项研究集中在酸性溶液中质子性的相互作用行为。

7.In chemistry, protonic 质子性的 compounds are essential for understanding acid-base reactions.

在化学中,质子性的化合物对于理解酸碱反应至关重要。

8.Researchers are exploring protonic 质子性的 materials for their potential use in fuel cells.

研究人员正在探索质子性的材料,以便在燃料电池中潜在使用。

9.The protonic 质子性的 transfer is a key mechanism in enzyme catalysis.

在酶催化过程中,质子性的转移是一个关键机制。

作文

In the realm of physics and chemistry, the term protonic refers to anything related to protons, which are fundamental particles found in the nucleus of an atom. Protons carry a positive charge and play a crucial role in determining the identity of an element. The understanding of protonic interactions is essential for various scientific fields, including nuclear physics and chemistry. For instance, when we talk about protonic acids, we are referring to substances that can donate protons to other substances, thus influencing chemical reactions. This property is vital in many biological processes, such as enzyme activity and metabolic pathways.One significant application of protonic principles is in the development of proton exchange membrane fuel cells (PEMFCs). These fuel cells utilize the movement of protons through a membrane to generate electricity, making them a promising technology for clean energy solutions. The efficiency of these fuel cells largely depends on the protonic conductivity of the materials used, which determines how easily protons can pass through the membrane. Research into enhancing the protonic conductivity of these materials is ongoing, aiming to improve the performance and longevity of fuel cells.Furthermore, the study of protonic behavior is not limited to theoretical applications; it has practical implications in various industries. For example, in pharmaceuticals, understanding protonic interactions can lead to better drug design and delivery systems. By manipulating the protonic properties of drugs, scientists can enhance their solubility and absorption in the body, ultimately improving patient outcomes.In addition to its applications in science and technology, the concept of protonic behavior can also be observed in everyday life. For instance, the acidity of a solution is often measured by its protonic concentration. This measurement is crucial in fields like agriculture, where soil pH affects crop growth and health. Farmers must understand the protonic nature of their soil to make informed decisions about fertilization and crop management.Moreover, advancements in our understanding of protonic interactions have led to breakthroughs in medical imaging techniques, such as magnetic resonance imaging (MRI). MRI relies on the behavior of protons in a magnetic field to create detailed images of the body's internal structures. This non-invasive imaging technique has revolutionized diagnostics and treatment planning in modern medicine.In conclusion, the term protonic encompasses a wide range of scientific concepts and applications, from fundamental particle physics to practical uses in energy production and medicine. Its significance extends beyond the laboratory, influencing various aspects of our daily lives and the advancement of technology. As research continues to explore the intricacies of protonic interactions, we can expect further innovations that harness the power of protons for a sustainable and healthier future.

在物理和化学领域,术语protonic指与质子相关的任何事物,质子是存在于原子核中的基本粒子。质子带有正电荷,并在决定元素的身份方面发挥着至关重要的作用。理解protonic相互作用对于包括核物理和化学在内的各种科学领域至关重要。例如,当我们谈论protonic酸时,我们指的是能够将质子转移给其他物质的物质,从而影响化学反应。这种特性在许多生物过程中是至关重要的,例如酶活性和代谢途径。protonic原理的一个重要应用是在质子交换膜燃料电池(PEMFCs)的开发中。这些燃料电池利用质子通过膜的运动来产生电力,使其成为清洁能源解决方案的有前景的技术。这些燃料电池的效率在很大程度上取决于所用材料的protonic导电性,这决定了质子通过膜的难易程度。对提高这些材料的protonic导电性的研究正在进行,旨在改善燃料电池的性能和使用寿命。此外,protonic行为的研究不仅限于理论应用,它在各个行业也具有实际意义。例如,在制药领域,理解protonic相互作用可以导致更好的药物设计和输送系统。通过操纵药物的protonic特性,科学家可以增强其在体内的溶解度和吸收,从而最终改善患者的治疗效果。除了在科学和技术中的应用外,protonic行为的概念也可以在日常生活中观察到。例如,溶液的酸度通常通过其protonic浓度来测量。这一测量在农业等领域至关重要,因为土壤pH值会影响作物的生长和健康。农民必须理解他们土壤的protonic性质,以便做出有关施肥和作物管理的明智决策。此外,我们对protonic相互作用的理解的进步已经导致了医学成像技术的突破,例如磁共振成像(MRI)。MRI依赖于质子在磁场中的行为来创建身体内部结构的详细图像。这种非侵入性成像技术彻底改变了现代医学中的诊断和治疗计划。总之,术语protonic涵盖了广泛的科学概念和应用,从基本粒子物理到在能源生产和医学中的实际用途。它的意义超越了实验室,影响着我们日常生活的各个方面以及技术的进步。随着研究继续探索protonic相互作用的复杂性,我们可以期待进一步的创新,利用质子的力量为可持续和更健康的未来服务。