optical transfer function

简明释义

光学传递函数

英英释义

The optical transfer function (OTF) is a mathematical description of how an optical system transfers light from the object space to the image space, encompassing both amplitude and phase information.

光学传递函数(OTF)是对光学系统如何将光从物体空间传递到图像空间的数学描述,涵盖了幅度和相位信息。

例句

1.In microscopy, the optical transfer function (光学传递函数) is crucial for understanding how well the system can resolve small features.

在显微镜学中,光学传递函数optical transfer function)对于理解系统如何解析小特征至关重要。

2.The optical transfer function (光学传递函数) can be used to predict the quality of an optical image under various conditions.

可以使用光学传递函数optical transfer function)来预测在不同条件下光学图像的质量。

3.The performance of the imaging system can be evaluated using the optical transfer function (光学传递函数) to measure its resolution.

可以使用光学传递函数optical transfer function)来评估成像系统的性能,以测量其分辨率。

4.To enhance image clarity, researchers often analyze the optical transfer function (光学传递函数) of different lenses.

为了增强图像清晰度,研究人员通常会分析不同镜头的光学传递函数optical transfer function)。

5.The optical transfer function (光学传递函数) plays a significant role in designing optical systems for telecommunications.

在电信光学系统设计中,光学传递函数optical transfer function)起着重要作用。

作文

The term optical transfer function refers to a critical concept in the field of optics and imaging systems. It describes how well an optical system can transfer various spatial frequencies from the object being observed to the image that is produced. In simpler terms, it quantifies the ability of an optical system, such as a camera lens or microscope, to reproduce details from the object onto the image plane. Understanding the optical transfer function is essential for optimizing the performance of imaging systems, ensuring that they can capture images with high clarity and detail.The optical transfer function is often represented graphically, showing how different spatial frequencies are transmitted through the optical system. Spatial frequency refers to the level of detail present in the object; higher frequencies correspond to finer details, while lower frequencies represent coarser features. An ideal optical system would have a flat optical transfer function, indicating that it can transmit all spatial frequencies equally well. However, in reality, most optical systems have a limited range of frequencies they can effectively transmit, which leads to distortions or blurring in the resulting images.One of the main factors affecting the optical transfer function is the aperture size of the optical system. A larger aperture allows more light to enter, which generally improves the system's ability to resolve finer details. Conversely, a smaller aperture may limit the amount of light and consequently degrade the quality of the image by reducing the transmission of higher spatial frequencies. This trade-off between aperture size and image quality is a fundamental consideration in optical design and photography.Another important aspect of the optical transfer function is its dependence on the wavelength of light used in imaging. Different wavelengths can interact differently with the optical components, leading to variations in how well certain details are captured. For example, ultraviolet light may provide better resolution for certain applications compared to visible light, but it also presents challenges in terms of safety and equipment compatibility.In practical applications, engineers and scientists utilize the optical transfer function to evaluate and improve imaging systems. By analyzing the optical transfer function, they can identify weaknesses in the system and make necessary adjustments, such as changing lens designs, optimizing coatings, or altering the configuration of the optical path. This process is crucial in fields ranging from photography and cinematography to biomedical imaging and astronomical observations.In conclusion, the optical transfer function is a fundamental concept that plays a vital role in understanding and improving optical systems. By quantifying how well an optical system can reproduce details from an object, it enables engineers and scientists to design better imaging devices that meet the demands of various applications. The interplay between spatial frequency, aperture size, and wavelength highlights the complexities of optical design, making the study of the optical transfer function essential for anyone involved in the field of optics.

“光学传递函数”是光学和成像系统领域中的一个关键概念。它描述了一个光学系统如何将被观察对象的各种空间频率传递到所产生的图像中。简单来说,它量化了光学系统(如相机镜头或显微镜)将细节从物体复制到图像平面的能力。理解“光学传递函数”对于优化成像系统的性能至关重要,确保它们能够捕捉到高清晰度和细节的图像。“光学传递函数”通常以图形方式表示,显示不同空间频率如何通过光学系统传递。空间频率指的是物体中存在的细节水平;较高的频率对应于更精细的细节,而较低的频率则代表更粗糙的特征。理想的光学系统将具有平坦的“光学传递函数”,这表明它可以均匀地传输所有空间频率。然而,在现实中,大多数光学系统只能有效传输有限范围的频率,这会导致图像的失真或模糊。影响“光学传递函数”的主要因素之一是光学系统的光圈大小。较大的光圈允许更多的光线进入,通常提高系统分辨更细节的能力。相反,较小的光圈可能限制光线的数量,从而通过减少高空间频率的传输来降低图像质量。这种光圈大小与图像质量之间的权衡是光学设计和摄影中的一个基本考虑。“光学传递函数”还与用于成像的光波长有关。不同的波长可能以不同的方式与光学元件相互作用,导致捕获某些细节的能力变化。例如,紫外线可能在某些应用中提供比可见光更好的分辨率,但它也在安全性和设备兼容性方面带来了挑战。在实际应用中,工程师和科学家利用“光学传递函数”来评估和改善成像系统。通过分析“光学传递函数”,他们可以识别系统中的弱点并进行必要的调整,例如更改镜头设计、优化涂层或改变光学路径的配置。这个过程在从摄影和电影制作到生物医学成像和天文观测等各个领域都是至关重要的。总之,“光学传递函数”是一个基本概念,在理解和改善光学系统中发挥着至关重要的作用。通过量化光学系统从物体重现细节的能力,它使工程师和科学家能够设计出更好的成像设备,以满足各种应用的需求。空间频率、光圈大小和波长之间的相互作用突显了光学设计的复杂性,使得研究“光学传递函数”对于任何参与光学领域的人来说都是必不可少的。

相关单词

optical

optical详解:怎么读、什么意思、用法