optical isomerism

简明释义

光学异构性

英英释义

Optical isomerism is a form of stereoisomerism where molecules have the same molecular formula and connectivity of atoms but differ in the spatial arrangement of their atoms, leading to the ability to rotate plane-polarized light in different directions.

光学异构是立体异构的一种形式,其中分子具有相同的分子式和原子连接方式,但在原子的空间排列上有所不同,从而导致能够以不同的方向旋转平面偏振光。

例句

1.Understanding optical isomerism 光学异构现象 is essential for the design of new materials.

理解光学异构现象对于新材料的设计至关重要。

2.The study of optical isomerism 光学异构现象 is crucial in understanding the behavior of chiral molecules.

光学异构现象的研究对于理解手性分子的行为至关重要。

3.The presence of optical isomerism 光学异构现象 can lead to different biological activities of compounds.

存在光学异构现象可能导致化合物的生物活性不同。

4.Chemists often use polarimetry to measure optical isomerism 光学异构现象 in a compound.

化学家们常常使用偏振光法来测量化合物中的光学异构现象

5.In pharmaceuticals, optical isomerism 光学异构现象 can affect the efficacy and safety of drugs.

在制药行业,光学异构现象可以影响药物的有效性和安全性。

作文

Optical isomerism is a fascinating concept in the field of chemistry, particularly in organic chemistry. It refers to the phenomenon where two or more compounds have the same molecular formula and connectivity of atoms but differ in the spatial arrangement of their atoms. This difference in arrangement leads to the formation of isomers that are non-superimposable mirror images of each other, much like how our left and right hands are mirror images but cannot be perfectly aligned on top of one another. The study of optical isomerism (光学异构现象) is crucial because these isomers can exhibit different chemical properties and biological activities, which can have significant implications in various fields, including pharmaceuticals, agriculture, and food science.One of the most well-known examples of optical isomerism (光学异构现象) is found in amino acids, the building blocks of proteins. Most amino acids exist as chiral molecules, meaning they can exist in two forms, known as enantiomers. These enantiomers can interact differently with polarized light; one will rotate the plane of polarized light to the right (dextrorotatory), while the other will rotate it to the left (levorotatory). This property of rotating light is where the term 'optical' in optical isomerism (光学异构现象) comes from, highlighting the connection between the molecular structure and its optical activity.In the pharmaceutical industry, the importance of optical isomerism (光学异构现象) cannot be overstated. Many drugs are chiral, and their efficacy can depend on the specific enantiomer used. For instance, the drug thalidomide was initially marketed as a sedative and treatment for morning sickness in pregnant women. However, one enantiomer of thalidomide was effective for its intended use, while the other caused severe birth defects. This tragic outcome underscores the need for rigorous testing and understanding of optical isomerism (光学异构现象) when developing new medications.Furthermore, optical isomerism (光学异构现象) also plays a role in flavor and fragrance chemistry. Many natural compounds that contribute to the taste and smell of food are chiral. The enantiomers of these compounds can produce vastly different sensory experiences. For example, one enantiomer of a compound may have a sweet taste, while its mirror image may taste bitter. This phenomenon illustrates how optical isomerism (光学异构现象) impacts not only the scientific community but also everyday life through the foods we consume and the products we use.In conclusion, optical isomerism (光学异构现象) is a vital concept in chemistry that highlights the significance of molecular structure in determining the properties of compounds. Its implications extend far beyond the laboratory, influencing various industries, particularly pharmaceuticals and food science. Understanding optical isomerism (光学异构现象) is essential for chemists and researchers who aim to harness the power of chiral molecules for innovative applications that can improve our lives.

光学异构现象是化学领域,尤其是有机化学中一个引人入胜的概念。它指的是两个或多个化合物具有相同的分子式和原子连接方式,但在原子的空间排列上有所不同。这种排列上的差异导致形成的异构体是彼此不可叠加的镜像,就像我们的左手和右手是镜像但无法完美重叠一样。研究光学异构现象非常重要,因为这些异构体可能表现出不同的化学性质和生物活性,这在药物、农业和食品科学等多个领域具有重要意义。一个众所周知的光学异构现象的例子可以在氨基酸中找到,氨基酸是蛋白质的构建块。大多数氨基酸以手性分子的形式存在,这意味着它们可以以两种形式存在,称为对映异构体。这些对映异构体可以以不同的方式与偏振光相互作用;一种会向右旋转偏振光的平面(右旋),而另一种则会向左旋转(左旋)。这种旋转光的特性正是光学异构现象中“光学”一词的来源,突出了分子结构与其光学活性之间的联系。在制药行业中,光学异构现象的重要性不容小觑。许多药物都是手性的,它们的疗效可能依赖于所使用的特定对映异构体。例如,药物沙利度胺最初被作为镇静剂和孕妇晨吐的治疗药物。然而,沙利度胺的一个对映异构体对其预期用途有效,而另一个则导致严重的出生缺陷。这一悲惨的结果强调了在开发新药时,对光学异构现象进行严格测试和理解的必要性。此外,光学异构现象还在香料和香味化学中发挥着作用。许多自然化合物对食物的味道和气味产生影响,都是手性的。这些化合物的对映异构体可能产生截然不同的感官体验。例如,一个对映异构体可能具有甜味,而其镜像可能尝起来是苦的。这一现象说明了光学异构现象如何影响科学界以及我们日常生活中的食品消费和产品使用。总之,光学异构现象是化学中一个重要的概念,突显了分子结构在决定化合物性质中的重要性。它的影响远不止于实验室,延伸至多个行业,特别是制药和食品科学。理解光学异构现象对于希望利用手性分子的化学家和研究人员来说至关重要,以便开发出能够改善我们生活的创新应用。

相关单词

optical

optical详解:怎么读、什么意思、用法

isomerism

isomerism详解:怎么读、什么意思、用法