optical isomer
简明释义
旋光异构体
英英释义
例句
1.The study of optical isomers 光学异构体 can help chemists design better catalysts.
对光学异构体的研究可以帮助化学家设计更好的催化剂。
2.In organic chemistry, understanding optical isomers 光学异构体 is crucial for predicting the behavior of molecules.
在有机化学中,理解光学异构体对预测分子的行为至关重要。
3.The two forms of the drug are actually an optical isomer 光学异构体 of each other.
这两种药物实际上是彼此的一个光学异构体。
4.The optical isomer 光学异构体 of limonene smells like oranges, while its counterpart smells like lemons.
柠檬烯的光学异构体闻起来像橙子,而它的对应物闻起来像柠檬。
5.Pharmaceutical companies often focus on a single optical isomer 光学异构体 to improve drug efficacy.
制药公司通常专注于单一的光学异构体以提高药物的有效性。
作文
Optical isomers, also known as enantiomers, are a fascinating aspect of chemistry that highlights the complexity and beauty of molecular structures. These compounds are mirror images of each other, much like a left hand and a right hand. The concept of optical isomer (光学异构体) arises from the fact that these molecules cannot be superimposed onto one another, even though they contain the same atoms and are connected in the same way. This unique characteristic leads to different optical activities; one isomer may rotate plane-polarized light in a clockwise direction, while its counterpart rotates it counterclockwise. This property is crucial in various fields, including pharmaceuticals, where the efficacy and safety of drugs can depend on their specific optical isomer form.Understanding optical isomer (光学异构体) is essential for chemists and biochemists, as the interactions between these isomers and biological systems can differ dramatically. For instance, consider the drug thalidomide, which was prescribed in the late 1950s and early 1960s. One enantiomer was effective in alleviating morning sickness in pregnant women, while the other caused severe birth defects. This tragic event underscores the importance of studying optical isomer (光学异构体) and understanding how these compounds interact with biological receptors and enzymes.The phenomenon of optical isomer (光学异构体) is not limited to synthetic compounds; many naturally occurring substances exhibit chirality as well. Amino acids, the building blocks of proteins, are primarily found in their L-form, while sugars exist in both D- and L-forms. The chirality of these biological molecules is vital for their function. For example, enzymes are often highly specific for one optical isomer over another, demonstrating the critical role that optical isomer (光学异构体) plays in biochemistry.In addition to their biological significance, optical isomer (光学异构体) compounds also have practical applications in the development of chiral catalysts and materials. The ability to selectively produce one enantiomer can lead to more efficient synthesis processes and reduce waste in chemical manufacturing. Researchers continue to explore new methods for creating and utilizing optical isomer (光学异构体) to advance various industries, from agriculture to materials science.To further grasp the concept of optical isomer (光学异构体), it is helpful to visualize the molecules involved. When drawing the structures of chiral molecules, chemists often use Fischer projections or three-dimensional models to illustrate the spatial arrangement of atoms. This visualization aids in understanding how different arrangements can lead to distinct optical properties and biological activities.In conclusion, the study of optical isomer (光学异构体) is a crucial area of research in chemistry and biology. The unique properties of these molecules not only provide insight into the fundamental principles of chirality but also have significant implications for drug development, biochemical processes, and industrial applications. As scientists continue to unravel the complexities of optical isomer (光学异构体), the potential for new discoveries and innovations remains vast, highlighting the importance of this topic in the scientific community.
光学异构体,也称为对映体,是化学中一个引人入胜的方面,突显了分子结构的复杂性和美丽。这些化合物是彼此的镜像,就像左手和右手一样。optical isomer(光学异构体)这一概念源于这些分子无法重叠在一起,即使它们含有相同的原子并以相同的方式连接。这一独特特性导致了不同的光学活性;一个异构体可能顺时针旋转平面偏振光,而其对应的异构体则逆时针旋转。这一特性在多个领域至关重要,包括制药行业,因为药物的有效性和安全性可能依赖于其特定的光学异构体形式。理解optical isomer(光学异构体)对化学家和生物化学家来说至关重要,因为这些异构体与生物系统之间的相互作用可能会大相径庭。例如,考虑一下沙利度胺,这种药物在20世纪50年代末和60年代初被开处方。一个对映体在缓解孕妇晨吐方面有效,而另一个则导致严重的出生缺陷。这一悲惨事件强调了研究optical isomer(光学异构体)及其与生物受体和酶相互作用的重要性。optical isomer(光学异构体)现象不仅限于合成化合物;许多天然存在的物质也表现出手性。氨基酸,蛋白质的构建块,主要以L-形式存在,而糖则以D-和L-形式存在。这些生物分子的手性对其功能至关重要。例如,酶通常对一种光学异构体具有高度特异性,展示了optical isomer(光学异构体)在生物化学中的关键作用。除了生物学意义外,optical isomer(光学异构体)化合物在手性催化剂和材料的开发中也有实际应用。选择性生产一种对映体的能力可以导致更高效的合成过程,并减少化学制造中的废物。研究人员继续探索创造和利用optical isomer(光学异构体)的新方法,以推动农业到材料科学等各个行业的发展。为了进一步理解optical isomer(光学异构体)的概念,帮助可视化涉及的分子。当绘制手性分子的结构时,化学家通常使用费舍尔投影或三维模型来说明原子的空间排列。这种可视化有助于理解不同的排列如何导致不同的光学特性和生物活性。总之,optical isomer(光学异构体)的研究是化学和生物学中一个至关重要的研究领域。这些分子的独特属性不仅提供了对手性基本原理的深入了解,还有重大影响药物开发、生化过程和工业应用。随着科学家们继续揭示optical isomer(光学异构体)的复杂性,新发现和创新的潜力仍然广阔,突显了这一主题在科学界的重要性。
相关单词