pion
简明释义
n. 介子
n. (Pion)人名;(法、俄、罗)皮翁
英英释义
A pion is a type of subatomic particle that mediates the strong nuclear force between nucleons (protons and neutrons) in an atomic nucleus. | 介子是一种亚原子粒子,负责介导原子核内核子(质子和中子)之间的强核力。 |
单词用法
π介子的衰变 | |
π介子的交换 | |
带电π介子 | |
中性π介子 |
同义词
反义词
反介子 | 反介子是介子的反粒子。 | ||
重子 | Baryons, such as protons and neutrons, are heavier than pions. | 重子,例如质子和中子,质量比介子大。 |
例句
1.Methods The clinical dats of 38 cases (42eyes)with anterior ischemic optic neuropthy (AION) and 3 cases (5 eyes) posterior ischemic optic neuropthy (PION) were retrospectively analyzed.
方法回顾分析了38例4 2眼前部缺血性视神经病变(AION)及3例5眼后部缺血性视神经病变(PION)的临床资料。
2.Dr Learned and Dr Zee have come up with a design for a particle accelerator that would do the job a good deal more modestly, using another type of subatomic particle, the pion, as an intermediary.
莱德和哲博士设计出一种粒子加速器,利用另一种亚原子粒子n介子作为中介,从而实现更优的方案。
3.Dr Learned and Dr Zee have come up with a design for a particle accelerator that would do the job a good deal more modestly, using another type of subatomic particle, the pion, as an intermediary.
莱德和哲博士设计出一种粒子加速器,利用另一种亚原子粒子n介子作为中介,从而实现更优的方案。
4.It's not easy to kill a full-grown tree - especially one like the pion pine.
要弄死一棵成年的树,尤其是像矮松这样的树并不容易。
5.In particle physics, a pion is a type of meson that mediates the strong force between nucleons.
在粒子物理学中,介子是一种介导核子之间强相互作用的介子。
6.The decay of a pion can produce muons and neutrinos.
介子的衰变可以产生μ子和中微子。
7.Scientists use pions in experiments to study the interactions of quarks.
科学家在实验中使用介子来研究夸克的相互作用。
8.A pion has a mass that is about 140 MeV/c².
介子的质量约为140 MeV/c²。
9.In high-energy collisions, pions are often produced alongside other particles.
在高能碰撞中,介子通常与其他粒子一起产生。
作文
In the realm of particle physics, the study of subatomic particles unveils a fascinating world that is governed by fundamental forces. One of the most intriguing particles in this domain is the pion, which plays a pivotal role in mediating the strong nuclear force that binds protons and neutrons together in atomic nuclei. The pion is classified as a meson, which is a type of hadron composed of a quark and an antiquark. This unique composition gives the pion its distinctive properties and allows it to interact with other particles in significant ways.The existence of the pion was first proposed in the 1930s by Japanese physicist Yukawa Hideki, who theorized that this particle was responsible for the strong force between nucleons. This groundbreaking idea paved the way for further research and experimentation, ultimately leading to the discovery of the pion in particle accelerators. There are three types of pions: the positively charged pi+, the negatively charged pi-, and the neutral pi0. Each of these variations has its own unique characteristics and interactions.One of the remarkable aspects of the pion is its relatively short lifespan. It exists only for a brief moment before decaying into other particles. This rapid decay is a testament to the dynamic nature of particle interactions and the underlying principles of quantum mechanics. Despite their fleeting existence, pions are crucial for understanding the behavior of matter at the subatomic level.The importance of pions extends beyond theoretical physics; they have practical applications in various fields, including medical imaging and cancer treatment. For instance, pions can be used in particle therapy, a form of cancer treatment that utilizes charged particles to target and destroy cancerous cells. This innovative approach leverages the unique properties of pions to deliver precise doses of radiation while minimizing damage to surrounding healthy tissue.Furthermore, the study of pions contributes to our understanding of the fundamental forces that govern the universe. By examining how pions interact with other particles, scientists can gain insights into the nature of the strong force and the overall structure of matter. This knowledge not only enriches our comprehension of the universe but also fuels advancements in technology and medicine.In conclusion, the pion is a remarkable particle that serves as a key player in the intricate dance of subatomic interactions. Its role in mediating the strong nuclear force, along with its applications in medical science, underscores the significance of this particle in both theoretical and practical realms. As we continue to explore the mysteries of particle physics, the pion remains a symbol of the profound connections between the smallest constituents of matter and the vast universe we inhabit.
在粒子物理学领域,亚原子粒子的研究揭示了一个由基本力支配的迷人世界。其中一个最引人入胜的粒子是介子,它在介导强核力方面发挥着关键作用,该力将质子和中子结合在原子核中。介子被归类为介子,这是一种由夸克和反夸克组成的重子。这种独特的组成赋予了介子其独特的性质,并使其能够以重要的方式与其他粒子相互作用。介子的存在最早是在20世纪30年代由日本物理学家汤川秀树提出的,他推测这种粒子负责核子之间的强力。这一开创性的想法为进一步的研究和实验铺平了道路,最终导致在粒子加速器中发现了介子。介子有三种类型:带正电的π+、带负电的π-和中性π0。每种变体都有其独特的特性和相互作用。介子的一个显著方面是其相对短暂的生命周期。它只存在短暂的时刻便衰变成其他粒子。这种快速衰变证明了粒子相互作用的动态特性以及量子力学的基本原理。尽管它们的存在短暂,但介子对于理解亚原子层面物质的行为至关重要。介子的重要性超越了理论物理学;它们在多个领域具有实际应用,包括医学成像和癌症治疗。例如,介子可以用于粒子治疗,这是一种利用带电粒子靶向并摧毁癌细胞的癌症治疗方法。这种创新的方法利用了介子的独特属性,以精确的辐射剂量来靶向癌细胞,同时最大限度地减少对周围健康组织的损害。此外,对介子的研究有助于我们理解支配宇宙的基本力量。通过考察介子与其他粒子的相互作用,科学家可以深入了解强力的性质以及物质的整体结构。这一知识不仅丰富了我们对宇宙的理解,还推动了技术和医学的进步。总之,介子是一种非凡的粒子,在亚原子相互作用的复杂舞蹈中扮演着关键角色。它在介导强核力中的作用,以及在医学科学中的应用,突显了这一粒子在理论和实践领域的重要性。随着我们继续探索粒子物理学的奥秘,介子仍然是物质最小成分与我们所居住的广阔宇宙之间深刻联系的象征。