seismoscope
简明释义
英[ˈsaɪzməˌskəʊp]美[ˈsaɪzməˌskoʊp]
n. 简易地震计;地震波示波仪;[地震] 验震器
英英释义
An instrument that detects and measures the intensity and duration of seismic waves produced by earthquakes. | 一种检测和测量地震产生的地震波强度和持续时间的仪器。 |
单词用法
古代地震仪 | |
现代地震仪 | |
地震仪读数 | |
安装地震仪 | |
校准地震仪 | |
分析地震仪数据 |
同义词
地震仪 | 地震仪检测到了地震的震动。 | ||
地震记录仪 | 研究人员分析了地震记录仪收集的数据。 |
反义词
稳定性 | The stability of the building was tested after the earthquake. | 地震后建筑的稳定性得到了检验。 | |
平静 | The calmness of the ocean was a welcome sight after the storm. | 暴风雨过后,海洋的平静让人感到欣慰。 |
例句
1.In 1703, Frenchman Feuille invented the first seismic instrument of Europe — the mercury seismoscope (Dewey, 1969).
1703年法国Feuille发明欧洲第一台地震仪器——水银验震器(Dewey, 1969)。
2.I was the compass, printing descendants, I was PI, children and grandchildren Seismoscope.
我是指南针、印刷术的后裔,我是圆周率、地动仪的子孙。
3.In 1703, Frenchman Feuille invented the first seismic instrument of Europe — the mercury seismoscope (Dewey, 1969).
1703年法国Feuille发明欧洲第一台地震仪器——水银验震器(Dewey, 1969)。
4.The earliest "seismoscope" was invented by the Chinese philosopher Chang Heng in A. D. 132.
而最早的“验震仪”是中国的学者张衡在公元132年发明的。
5.The ancient Chinese invented the first known seismoscope 地震仪 to detect earthquakes.
古代中国人发明了第一个已知的地震仪 seismoscope 来检测地震。
6.In geology classes, students learn how to read the data from a seismoscope 地震仪 to understand earth movements.
在地质课上,学生学习如何读取地震仪 seismoscope 的数据以理解地球运动。
7.The museum has a replica of an ancient seismoscope 地震仪 that was used during the Han Dynasty.
博物馆里有一个汉朝时期使用的古代地震仪 seismoscope 的复制品。
8.Modern seismoscopes 地震仪 use advanced technology to provide real-time data on seismic activity.
现代地震仪 seismoscopes 使用先进技术提供关于地震活动的实时数据。
9.Scientists are developing new seismoscopes 地震仪 that can detect smaller tremors more accurately.
科学家们正在开发新的地震仪 seismoscopes,可以更准确地检测到较小的震动。
作文
The invention of the seismoscope (地震仪) marked a significant milestone in the study of earthquakes. This device, which was first developed in ancient China by Zhang Heng in 132 AD, was designed to detect and indicate the occurrence of seismic activity. The original seismoscope was a simple yet ingenious apparatus that utilized a pendulum mechanism to respond to ground movements. When an earthquake occurred, the pendulum would sway, causing a small ball to drop into one of several dragon heads positioned around the device. Each dragon head pointed in a different direction, representing the location of the earthquake's epicenter. This early form of technology laid the groundwork for modern seismology.Understanding the functionality of the seismoscope is essential for appreciating how far we have come in earthquake detection and monitoring. The ancient design, while innovative for its time, lacked the precision and sensitivity of contemporary instruments. Today’s seismometers are highly sophisticated devices that can measure even the slightest vibrations in the Earth’s crust. They utilize electronic sensors and advanced algorithms to provide real-time data on seismic activity, allowing scientists to monitor earthquakes as they happen and analyze their effects in detail.The role of the seismoscope in modern society cannot be overstated. With millions of people living in earthquake-prone areas, having reliable tools to detect and assess seismic events is crucial for public safety. Early warning systems based on data from seismometers can provide valuable seconds to minutes of advance notice, enabling individuals to take cover or evacuate buildings. This timely information can save lives and minimize injuries during an earthquake.Moreover, the study of seismic waves generated by earthquakes has led to significant advancements in our understanding of the Earth’s internal structure. By analyzing data collected from various seismoscope stations worldwide, geologists can infer details about the composition and behavior of the Earth’s layers. This research helps us understand not only earthquakes but also other geological phenomena such as volcanic eruptions and tsunamis.In addition to their scientific applications, seismoscope technologies are also used in engineering and construction. Buildings and infrastructure in seismic zones must be designed to withstand potential earthquakes. Engineers rely on data from seismometers to assess the seismic risk of a location and to develop structures that can endure such forces. This integration of seismic data into engineering practices exemplifies the practical importance of the seismoscope in safeguarding communities.In conclusion, the seismoscope (地震仪) represents a fascinating intersection of history, science, and technology. From its humble beginnings in ancient China to its modern counterparts, the evolution of this device illustrates humanity's ongoing quest to understand and mitigate the impacts of natural disasters. As we continue to improve our seismic monitoring capabilities, the legacy of the seismoscope serves as a reminder of the importance of innovation in addressing the challenges posed by our dynamic planet.
地震仪的发明标志着地震研究的重要里程碑。这个设备最早由张衡于公元132年在中国古代开发,旨在检测和指示地震活动的发生。最初的地震仪是一种简单而巧妙的装置,利用摆动机制来响应地面运动。当发生地震时,摆会摇摆,导致一个小球掉入设备周围几个龙头之一。每个龙头指向不同的方向,代表地震震中位置。这种早期的技术为现代地震学奠定了基础。了解地震仪的功能对于欣赏我们在地震检测和监测方面取得的进展至关重要。虽然古老的设计在当时具有创新性,但缺乏现代仪器的精确性和灵敏度。如今的地震仪是高度复杂的设备,可以测量地壳中的微小振动。它们利用电子传感器和先进的算法提供实时的地震活动数据,使科学家能够在地震发生时进行监测并详细分析其影响。地震仪在现代社会中的作用不可低估。随着数百万人生活在易发生地震的地区,拥有可靠的工具来检测和评估地震事件对公众安全至关重要。基于来自地震仪的数据的早期预警系统可以提供宝贵的几秒到几分钟的提前通知,使个人能够采取掩护或疏散建筑物。这些及时的信息可以挽救生命,减少地震期间的伤害。此外,对地震产生的地震波的研究已经显著提高了我们对地球内部结构的理解。通过分析来自世界各地各种地震仪站收集的数据,地质学家可以推断出有关地球层次的组成和行为的细节。这项研究不仅帮助我们了解地震,还帮助我们了解火山爆发和海啸等其他地质现象。除了科学应用外,地震仪技术还用于工程和建设。在地震多发区,建筑物和基础设施必须设计成能够承受潜在的地震。工程师依赖地震仪提供的数据来评估一个地点的地震风险,并开发能够抵御这种力量的结构。将地震数据融入工程实践中,体现了地震仪在保护社区方面的实际重要性。总之,地震仪代表了历史、科学和技术的迷人交汇。从它在中国古代的谦卑起源到现代对应物,这一设备的发展展示了人类不断探索理解和减轻自然灾害影响的追求。随着我们继续改善地震监测能力,地震仪的遗产提醒我们创新在应对我们动态星球所带来的挑战中的重要性。